

Introduction

SUPERFIX®

- A Leader in Customer Service
- Products Of Consistent Quality
- Continuous Research & Development
- Competitive Pricing

Superfix offers a wide range of semi-finished products made from more than 100 different aluminium materials. These consist of rods, plates, heavy-walled and thin-walled tubes, and sections in stock.

We distribute our aluminium from Singapore to around the globe for commerce with various industries. We are able to help you get any facts and figures you need on non-standard materials. Our professional sales team places customer satisfaction as a top priority, attending to your various needs.

Key features of the system we implemented are the advisory service provided by our engineers, and a customer oriented logistics concept.

We specialise in the fabrication of Semi-Finished Aluminium, and offer a complete range of service to our customers, from basic to complex fabrication. There are no restrictions on the minimum quantity ordered. We have produced quantities from one or two pieces up to one million pieces.

If your product requires a secondary operation such as drilling, tapping or punching, we have the equipment and knowledge to perform the work. For the more demanding machining work requiring close-tolerance, our CNC machines centre provides us with both accuracy and flexibility. Our in-house coordinates measuring machine enables us to inspect the material to our customers' specifications.

The fabrication services listed above are only a brief overview of our capabilities. Send us your blue prints and specifications for a prompt quote without obligation.

For any enquiries, email us or contact us.

Table of Contents

	Page	
Mission Statement	1	
Company Profile	1	
Important Note	2	
Industry Applications	3-4	
Classification of Aluminium Alloys	5	
Physical Properties	6	
Mechanical Properties	7	
Technological Properties	8	
Principal Grades of Aluminium Alloys	9	
AA 1100 (H14) Commercial Coil	10	
AA 1100 (H14) Commercial sheet	11	
AA 1100 Perforated Sheet	12	
AA 2024 (T351) Sheet/Plate	13	
AA 2024 (T351/T4) Round/Rod	14	
AA 5052 (H32) Sheet/Plate	15	
AA 5052 Checkered Plate (5 Bar Pattern)	16	
AA 5052 Perforated Sheet	17	
AA 5083 (H112/H321) Sheet/Plate	18-19	
AA 5754 Checkered Plate	20	
AA 6061 (T6/T6511) Econ-O-Plate	21	
AA 6061 (T6/T651) Sheet/Plate	22-23	
AA 6061 (T6) Flat Bar	24-26	
AA 6061 (T6/T651) Round Rod	27	
AA 6061 (T6/T651) Square Bar	28	
AA 6061 (T6) Hexagon Bar	29	
AA 6061 (T6) Equal Angle Bar	30	
AA 6061 (T6) Unequal Angle Bar	31	
AA 6061 (T6) U Channel	32	
AA 6061 (T6) Round Tube	33	
AA 6061 (T6) Square Tube	34	
AA 6061 (T6) Rectangle Tube	35	
AA 7075 (T6/T651) Sheet/Plate	36	
AA 7075 (T6/T651) Round Rod	37	
Aluminium Alca Plus Cast Plate	38	
Machining Guidelines of Aluminium	39-40	
Sales Agreement	41-42	

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

1. Mission Statement

A leader in customer service, with technical competence to ensure compliance to international standards of safety and quality, continuous research and development, and providing products of consistent quality at competitive prices.

2. Company Profile

Superfix was incorporated in 1987 to provide a wide range of semi-finished products made from more than 100 different Aluminium Alloys consist of rods, plates, sheet, coils, heavy-walled and thinwalled tubes, films and sections in stock.

Our focus is on providing a total solution, offering sales and services to a diverse base of customers in the electrical and electronic, aircraft, marine, automotive, automation, semi-conductor and disk drive industries.

Superfix name has become synonymous with engineered Aluminium Alloys that provide excellent properties for fatigue strength, shear strength, brinell hardness, melting range, coefficient of linear expansion, specific heat, temper, thermal conductivity, electrical resistivity, mechanical properties and anodising to any colour to a vast array of sectors.

Over the years, with our commitment to total quality excellence, we were able to build up a team of dedicated professionals with a wide spectrum of expertise. It was through their collective efforts, together with the support of valued clients and business partners, that we established our presence in the local industry, as well as the international arena.

Superfix is keen to establish a worldwide network of distributors and business partners. We look forward to technical discussions, sharing of knowledge and expertise, and building up multi-party, beneficial business relationships in an era where society and the world becomes a global village. We are adaptable to changes and embrace Information Technology as a necessary step towards excellence in customer service.

Share our vision. Join us as a business partner. Together, we can be more competitive and reach out more effectively to our customers to serve them better.

3. Important Note

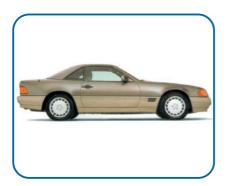
3.1 Disclaimer

- 3.1.1 Superfix (Singapore) Pte Ltd ("Superfix") does not warrant that the use of this user manual together with the information and data (Product Catalogue & Technical Handbook) or any part thereof by you shall not infringe the rights of any third party, including without limitation the infringement of any trademark, copyright, design right, patent, trade secret or other intellectual property rights of any third party and all warranties in respect of the Product Catalogue & Technical Handbook are excluded to the fullest extent permitted by law.
- 3.1.2 Whilst Superfix has endeavoured to develop the Product Catalogue & Technical Handbook and to derive the information and data contained therein from tests conducted in conformance with industry standards, Superfix does not warrant that the Product Catalogue & Technical Handbook is error free. Superfix further does not warrant the sufficiency, accuracy or quality of the Product Catalogue & Technical Handbook and the results you may or may not obtain in your use of the Product Catalogue & Technical Handbook.
- 3.1.3 You assume all risks and liabilities of using and relying on the Product Catalogue & Technical Handbook, its functions, information and data contained therein.
- 3.1.4 THIS PRODUCT CATALOGUE & TECHNICAL HANDBOOK IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED. THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY, THERE ARE NO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 3.1.5 SUPERFIX SHALL NOT BE LIABLE IN ANY EVENT FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR INDIRECT DAMAGES (INCLUDING WITHOUT LIMITATION LOSS OF REVENUE, PROFITS, OPERATIONAL TIME, USE OF EQUIPMENT OR DATA) AND WHETHER ASSERTED IN CONTRACT, TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY) OR OTHERWISE, AND IRRESPECTIVE OF WHETHER SUPERFIX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
- 3.1.6 ANY LIABILITY TO YOU OR TO ANY THIRD PARTY BY SUPERFIX SHALL BE LIMITED EXCLUSIVELY TO REPLACING THE PRODUCT CATALOGUE & TECHNICAL HANDBOOK ONLY.

3.2 Updates

- 3.2.1 Superfix may from time to time update or revise the Product Catalogue & Technical Handbook and is under no obligation to conduct such revisions or updates on a timely basis or whenever any significant error or omission is detected or to furnish such revisions or updates to you.
- 3.2.2 The informations contained in this product catalogue and Technical Handbook are given for guidance only. They impose no liability on Superfix and do not constitute contractual undertakings Guidance given here for the selection of the most appropriate material for an intented use must be checked by the user to take account of his own manufacturing conditions. The user must take all necessary steps to ensure that the materials selected are suitable for the intended application.

4. Industry Applications

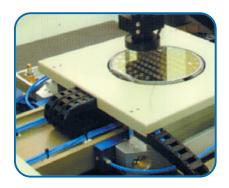

Aircraft

- Upper Wing Skins
- Engine Pylon Support Structure
- Wing Spars (Plate)
- Wing Ribs (Plate)
- Seat Tracks
- Floor Beams

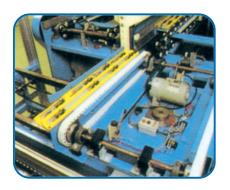
Marine

- Deck Cleats
- Ladders
- Bow Rails
- Ski Poles
- Panels for Decks and Side Walls
- Passenger Grab Handle
- Front and Rear Seat Bases

Automotive


- Brake Systems
- Shock Absorbers
- Components for Steering and Suspension
- Automatic Transmissions

Electronic


- Audio & Consumer Electronics
- Semi-Conductor Equipment
- Computers Peripheral
- Assembly & Carrier Plate
- Disc Drive Industry

4. Industry Applications

Semi-conductor

- E-beam Inspection of Wafers in Vacuum
- Magnetic Random Access Memory (MRAM) Machine
- Custom Air Bearing Equipment
- Structural Plate for Integrated Mechanical Air Bearing Stage Systems
- Multi Process Cluster Tool

Automation & Assembly

- Pick and Place Unit
- PCB Chain Insertion Conveyor
- Empty Pallet Return Lifter
- Twin Belt in Feed Conveyor Systems
- Automatic Robots Assembly Line

Mechanical Engineering

- Structural Rotating Plate for Conveyor
- Robotic Equipment & Components
- Cylinder & Valve
- Roller Guide
- Handling Module. Pick and Place Machinery

Chemical

- Boiler Making
- Barrels & Tanks
- Components & Housings
- Structural Stairways
- Sinks & Ducks

Classification of Aluminium Alloys

1 Classification of wrought aluminium and aluminium alloys.

Very pure aluminium possesses high ductility together with low mechanical strength. It can be made significantly harder by adding elements which form alloys with aluminium.

And here, a distinction is drawn between:

- pure aluminium and alloys which do not harden by precipitation (i.e. which are not heat-treatable), and
- · alloys which harden by precipitation (heat-treatable alloys).

1-1 PURE ALUMINIUM AND NON-PRECIPITATION-HARDENING ALLOYS (non-heat-treatable alloys)

In the case of this category, hardening is brought about by the combined effects of the alloying elements (magnesium, manganese, iron, silicon, etc.) and of the work-hardening of the metal resulting from shaping and forming. Also, by combining the effect of work-hardening and the effect of softening by means of annealing or recovery heat treatments, it is possible for each alloy to adjust hardness over a wide range, from the annealed (0) temper, characterised by maximum plasticity and minimum hardness and minimum plasticity.

This category consists of the alloys of Series 1000, 3000 and 5000.

Series 1000 - Pure aluminium

Pure aluminium is subdivided into grades distinguished by their aluminium contents. It exhibits excellent resistance to atmospheric corrosion, high thermal and electrical conductivities and excellent forming properties. Mechanical properties are relatively modest. It is very widely used: in the electrical engineering, chemical, petrochemical and building industries, in decorative applications, for home electrical appliances, etc.

Series 3000 - AlMn (Mg) alloys

Manganese is the principal alloying element in this series, the most representative member of which is 3003 alloy. Its excellent forming properties, ability to withstand atmospheric corrosion and good weldability mean that it is employed in a huge variety of applications, ranging over boilermaking and fabrication, pressing and drawing, the building industry, home electrical appliances (washing machine tubs, etc.), the manufacture of heat exchangers, etc.

Alloy 3004, which also incorporates magnesium, has found extensive applications in the manufacture of cans and of electrically welded tube.

Series 5000 - AIMg alloys

Magnesium, sometimes associated with additions of manganese and chromium, is the principal alloying element in this series. These alloys exhibit a broad range of medium mechanical properties, good general weldability, excellent low temperature performance (cryogenics) and excellent resistance to seawater and marine atmospheres. Their forming properties, which are good at low magnesium contents, fall off as the magnesium content increases. In the case of specific applications involving heating to temperatures above 65°C in moist or hostile atmospheres care has to be exercised when choosing the alloy and temper, particularly as concerns those alloys containing more than 3.5% magnesium. Applications for AIMg alloys vary very considerably: building, shipbuilding (hull and superstructure), chemical industry (seawater desalination) and foodstuffs (can manufacture and cooking utensils), haulage and transport (truck bodies, road tanks and vehicle coachwork) and general engineering (fabrication)

Among the better known alloys, special mention may be made of 5005, 5052, 5754, 5083, 5086 and 5182.

1-2 PRECIPITATION-HARDENING ALLOYS (heat-treatable alloys)

This family of alloys, containing copper, magnesium, silicon and zinc, can be precipitation-hardened by a process of heat treatments.

The first treatment stage, carried out at high temperature, is <u>solution</u> <u>treatment</u>, whereby the alloying elements are brought into solid solution. This is followed by very rapid cooling, generally by plunging into cold water, known as <u>quenching</u>, the purpose of which is to "freeze" at room temperature the structure obtained at the solution temperature. The quenched metal is in a metastable condition, which evolves at room temperature towards a more stable structure, the alloying elements being expelled from the supersaturated solution as precipitates. This phenomenon is accompanied by a significant increase in hardness and is known as <u>precipitation hardening</u>.

When it occurs at room temperature, the effect is known as <u>natural ageing</u>. It can be speeded up by holding at higher temperatures, thus yielding a greater degree of hardness in the case of certain alloys; this is known as <u>age hardening or artificial ageing</u>. The rate of precipitation hardening slows considerably if the metal is held temperatures below 0°C. Series 2000 rivets, for example, are stored in the cold room immediately after quenching and will then conserve their ductility until they are about to be used. Further details are to be found in section 3 - heat treatments. This family comprises the Series 2000, 6000 and 7000 alloys.

Series 2000 - AICu alloys

Copper is the principal alloying element in this series of alloys, which, in the quenched and naturally aged temper, possess mechanical properties superior to those of mild steel, artificial ageing, carried out most frequently in the case of 2014, 2618A and, sometimes, 2024, increases yield strength at the expense of ductility.

These alloys, employed mainly for working structures, are distinguished by high mechanical properties in the T6 temper, good temperature performance, but less resistance to atmospheric corrosion than the copper-free alloys. They can, under certain conditions, be liable to intergranular corrosion. Special precautions can be taken (protection by cladding with a layer of pure aluminium or 6000 alloy, anodising, painting, etc.) to overcome this shortcoming. The Series 2000 alloys are weldable only by special techniques such as electron beam welding.

They are widely employed in the aerospace industry, weapons manufacture, mechanical engineering (rivets, light beams, etc.) and for sports equipment. The best-known members of the Series are 2017 and 2024.

Series 6000

The alloying elements in this family are magnesium and silicon, which combine to form the hardening compound Mg2Si. These alloys are employed in the quenched/naturally aged or quenched/artificially aged tempers. They exhibit only average mechanical properties, inferior to those of the 2000 and 7000 alloys, but sufficient for the applications envisaged. They possess very good hot forming properties. They are the alloys for extrusion. Mention should also be made of their good cold forming properties in the annealed temper and, to a lesser extent, in the T4 temper. and of their satisfactory resistance to atmospheric corrosion and good weldability.

This series is in fact composed of two distinct groups of alloys. The first group, consisting of alloys containing higher proportions of magnesium and silicon, together with additions of manganese, chromium and zinc, exhibits the highest mechanical properties. These are mainly 6005A, 6061, 6082 and 6351. This group is intended for structural applications (structural frames, pylons, towers, bridges, crane jibs, etc.)

The second group, consisting of alloys containing less magnesium and silicon, combines high extrusion speeds with lower mechanical properties. Its applications are essentially in decoration, furniture and building (door and window frames). The most representative member is 6060. The 6106 alloy, which is closer to the first group described, is particularly well suited to light structural applications.

The variety of applications for the Series 6000 alloys is very considerable, including: decoration, building, structures, fabrication, piping, haulage and transport (coachwork, panelling, railcar sections, structural framing and sideboards) and sporting pursuits (boat masts, etc.).

Series 7000 - AIZn (Cu) alloys

Zinc, together with magnesium, is the principal alloying element in the alloys of this family, which, when they contain copper, exhibit the highest mechanical properties of all the aluminium alloys. They fall into two groups, depending on whether or not they contain copper.

The alloys incorporating copper possess the highest mechanical strength.
 They can be welded only by special processes, particularly electron beam welding.

Their atmospheric corrosion resistance is low and the same protective precautions need to be taken as recommended for the 2000 series. These high performance alloys, the most representative of which is 7075, are employed mainly in the aerospace and weapons industries, but also in other applications (sporting goods, nuts and bolts, etc.)

• The copper-free alloys exhibit properties inferior to those of the group just described. Weldability on the other hand is good. In the T6 temper they are much more resistant to atmospheric corrosion than the copper-containing alloys. However, the T4 temper or thermally affected weld areas are susceptible to exfoliating corrosion. Applications for these alloys relate mainly to the weapons industry (armour-plating, Engineer Corps equipment, etc.), for which 7020 is used.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Physical Properties

The data tabulated below and overleaf have in many cases been averaged over a variety of products differing in shape, size and methods of manufacture, and are not therefore representative of any specific category of product. The table is merely intended to serve as a rough basis for comparison of alloys and tempers. No guarantee is given or implied, nor should the data tabulated be employed in design studies or calculations.

TYPICAL PHYSICAL PROPERTIES

Alloy	Density	Melting range (approx.)	Coefficient of linear expansion	Specific heat	Temper	Thermal conductivity	Resistivity
	g/cm³	°C	(20° to 100°C) °C¹ X 10°	(0° to 100°C) J/kg°C		(0° to 100°C) W/m°C	(20°C) μΩcm
1050A	2,70	646-657	23,6	945	0 H18	231 231	2,8
1080	2,70	648-657	23,6	945	0 H18	234 232	2,8 2,8 2,8
1100 1200	2,71	643-657	23,6	950	0 H18	222 218	2,9 3,0
2011	2,83	540-645	23,2	905	T3 T8	152 173	4,4 3,8
2014	2,80	508-635	22,5	920	T4 T6	135 151	5,1 4,3
2017A 2024 2030 2618A	2,79 2,77 2,82 2,76	510-640 500-638 510-638 549-638	23,0 22,9 22,9 22,3	920 920 920 920	T4 T3 T3/T4 T6	134 120 135 146	5,1 5,7 5,1 4,6
3003	2,73	640-655	23,2	935	0	180	3,5
3004 3005 3105	2,72 2,73 2,72	630-655 632-655 635-655	23,8 23,7 23,6	935 935 940	H18 0-H18 0-H18 0-H18	155 163 166 172	4,2 4,1 3,9 3,8
5005 5050 5052 5083 5086 5454 5754	2,70 2,69 2,68 2,66 2,66 2,66 2,69 2,67	630-655 625-650 605-650 580-640 585-642 600-645 590-645	23,7 23,8 23,8 23,9 23,9 23,7 23,8	945 945 945 945 945 945 945	0-H38 0-H38 0-H38 0-H32 0-H32 0-H34 0-H34	205 192 138 120 126 136 132	3,3 3,4 4,9 6,0 5,6 5,1 5,3
6005A 6060 6061 6082 6106	2,70 2,70 2,70 2,71 2,70	605-655 615-655 575-650 570-645 610-655	23,6 23,4 23,6 23,5 23,5	940 945 940 935 940	T6 T5 T6 T6 T5	178 200 167 174 180	3,5 3,3 4,0 4,2 3,5
7020 7075	2,78 2,80	605-645 475-630	23 23,5	920 915	T5 T6	140 130	4.9 5,2

Standard values are quoted in this table. As is well known, these values can be affected by processing conditions, modifications, added materials and environmental influences. They are compiled on the basis of present experience and can only be regarded as non-binding. We cannot accept any responsibility for their accuracy.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Mechanical Properties - at 20°C

Alloy/Temper	Мес	chanical proper	ties	Brinell hardness	Modulus of elasticity*	Shear strength	Fatigue strength**
	R0,2	R	A5,65		MPa	MPa	MPa
	0,2% PS, MPa	UTS, MPa	E5.65, %				(10 ⁸ cycles)
1050A-0	105	80	42	21	69 000	55 71	25
H14 H18	105 140	115 155	11 6	30 41	-	90	55
1080 -0	140	75	42	19	69 000	50	
H14	95	105	11	27	-	64	
1100 0 1200		90	35	22	69 000	65	
H14	115	125	10	33	-	80	
H18	150	165	5	44	-	100	
2011 T3	290	340	13	95	71 000	210	125
T8	300	380	15	100	- 74 000	234 260	
2014 T4 T6	280 420	420 480	18 12	105 137	74 000	290	145
2017A T4	280	420	18	105	74 000	260	135
2024 T3	320	465	18	120	73 000	285	140
2030 T3	390	450	10	115	73 000 74 000	275 270	135 140
2618A T6	390	440	8,5	135			140
3003 -0 H14	140	115 155	38 8	28 42	69 000	75 95	60
H18	190	205	4	55	-	110	
3004 -0		180	27	45	69 000	110	
H34	200	240	8	64	-	125	
H38 3005 -0	250	285 130	5 30	77 31	69 000	145 80	
H34	165	190	8	50	-	110	
3105 -0		120	30	30	69 000	85	
H14	155	175	7	46	-	105 117	
H18	195	220	4	58	-		+
5005 -0 H34	140	120 160	30 10	28 41	69 000	75 96	
H38	180	200	5	51	-	110	
5050 -0		145	28	36	69 000	105	1
H34	165	190	9	53	-	125	
H38 5052 -0	200	220 190	5 28	63 48	70 000	140 122	
H-24	205	250	12	68	-	142	
H-38	255	285	5	77		165	145
5083 -0	160	305	23	70	71 000	185 200	115
H-166 5086 -0	230 135	335 278	20 25	63	71 000	165	108
H32/H116	225	310	18			185	
5454 -0	110	250	22	62	70 000	159	
H34 5754 -0	230 100	300 220	6 23	81 50	70 000	180 130	100
H24	215	270	10	68	-	150	
6005A***T6	260	285	12	90	79 500	185	97
6060 T6	190	220	16	75	69 500	150	72
**** T51	145	210	20	72	-	140	00
6061 *** T6	270 280	305 315	13 12	95 95	69 000 69 500	205 218	98 102
6082 *** T6 T66	280	330	10	100	- 69 500	225	'``
6106 T5	230	265	13	85	69 500	175	84
7020 T5	320	380	12	120	71 500	245	125
7075 T6	495	565	11	150	72 000	330	162
T73	430	500	13	140	<u></u>	300	

Average of tension and compression moduli. Compression modulus is some 2% greater than tension modulus.

Standard values are quoted in this table. As is well known, these values can be affected by processing conditions, modifications, added materials and environmental influences. They are compiled on the basis of present experience and can only be regarded as non-binding. We cannot accept any responsibility for their accuracy.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

^{**} Using 20 -22 mm diameter test pieces subjected to 10 ⁸ cycles of completely reversed stress on the ALKAN test rig.

^{***} Can be press-quenched.

^{****} Under-aged temper giving good bendability.

Technological Properties

All	loy	corre	pheric osion tance	Ano	disabil	ity		Welda	ability		Machi	nability	Draw	ability	Suitability
Ten	nper	Normal atm.	Marine env.	Protective	Hard	Bright	Inert gas (TIG&MIG)	Resistance welding	Brazing	Electron deam	Break-up of chip	Brightness of machined surface	Stretch forming	Deep drawing	for spinning
1050A 0		A	В	Α	Α	В	A	Α	A	A	D	A	A	В	Α
	H14 H18	A	B B	A	A	B B	A	A	A A	A A	D	A A	B D	A B	
1080	0 H14	A	A A	A	A	A A	A	B B	A A	A	D D	A A	A B	B A	Α
1100	0	A	В	A	A	C	Ā	A	Ä	A	D	A	A	В	Α
1200	H14 H18	A	B B	A	A	C C	A A	A A	A A	A A	D C	A A	B D	A B	
2011		C	D	С	C/B	C	D	·····	D		Ā	В	D	D	D
2014	T4	С	D	С	В	С	D	Α	В	В	В	С	D	D	D
	T6	С	D	С	В	С	D	A	В	В	В	С	D	D	D
2017A	T4 T4	С	D D	С	В	00	D D	A	B B	B	B B	B B	D D	D	D D
2024	T3	C	D D	С	C/B	C	D	A	D	В	A	С	0	D	D
2618A	T6	C	D	C	С	C	D	В	С	С	C	В	<u> </u>	D	D
3003	0	Ā	В	A	В	C	A	Ā	A	A	D	Ā	A	В	В
3103	H14 H18	A	B B	A A	B B	CC	A A	A A	A A	A A	D C	A A	B D	A B	
3004	0	Α	В	Α	В	С	Α	Α	Α	Α	D	Α	A	В	
	H34 H38	A A	B B	A A	B B	C C	A A	A A	A A	A A	C C	A A	CD	A B	
3005	0 H34	A A	B B	A A	B B	00	A A	A A	A A	A A	D D	A A	A C	B B	C D
3105	0	A	В	Â	В	C	Â	A	A	A	D	Ā	A	В	C
	H14 H18	A	B B				A A	A	A A	A	D C	A	CD	A B	D D
5005	0	A	В	Α	Α	В	A	A	Α	A	D	Α	A	В	В
	H34 H38	A A	B B	A A	A A	B B	A A	A A	A A	A A	D C	A A	CD	A B	
5050	0	A	В	A	A	В	В	В	В	Α	D	Α	Α	В	
	H34 H38	A	B B	A A	A A	B B	B B	B B	B B	A A	D C	A A	C	A B	
5052	0	A	A	Α	Α	В	В	В	В	A	C	Α	Α	Α	С
	H24 H36	A A	A B	A A	A A	B B	B B	B B	B B	A A	C C	A A	C D	A B	
5083	0	A**	A**	Α	Α	С	Α	А	D	Α	С	Α	B C	B B	С
5086	H116	A** A(**)	A** A(**)	A	A	C	A	A	D	A	C	A	В	В	С
	H116	A(**)	A(**)	A	Α	С	A	A	D	Α	С	A	С	В	
5454	0 <u>H34</u>	A	A	A A	A A	B B	A	A A	O O	A	C	A A	ВС	B B	С
5754	0 H24	A	A A	A A	A A	B B	A A	A A	CC	A A	C C	A A	B C	B B	С
6005A	T6	A	В	A	A	C	В	В	В	A	C	Α	D	D	
6060	T5	Α	В	Α	Α	В	В	Α	Α	Α	С	Α	D	С	
6061	0 T6	A	B B	A A	A A	CC	B B	C B	B B	A A	D C	А	A D	A D	В
6082	0	Α	В	Α	Α	С	В	С	В	Α	D		A D	A D	В
6106	T6 T5	A	В	A	A	C	B B	A B	B B	A	C	A	D	├ └	
7020	T5	B***	C***	В	A	C	В	В	В	В В	В	В	D	D	
7075	T6	C****	D****	В	Ā	c	D	В	C	В	В	В	D	D	
7049A	T6	C****	D****	В	Α	Č	D	В	C	С	В	С	D	D	

Rating: A = very good B = good C = acceptable

D = poor or not recommended

Standard values are quoted in this table. As is well known, these values can be affected by processing conditions, modifications, added materials and environmental influences. They are compiled on the basis of present experience and can only be regarded as non-binding. We cannot accept any responsibility for their accuracy.

Superfix (Singapore) Pte Ltd

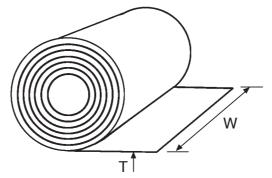
126 Genting Lane, Singapore 349576

Oxy-acetylene weldability as for inert gas welding.

^{***} In T4 temper, or when welding in T5 et T6 tempers, suitable precautions should be taken to safeguard against corrosion.

^{****} Risk of stress corrosion in T6 temper.

Principal Grades of Aluminium Alloys


				DE	SIGN	ATION				
ISO	France NF A02-104	U.S.A. ASTM*	West Germ DIN(1712-1		Kingd	nited- om B.S. erly New	Italy UNI	Switzerland VSM	Sweden SIS	Japan JIS**
Al99.5 Al99.7 Al99.8 Al99.0Cu Al99.0	1050A 1070A 1080 1100 1200	(1050) (1070) 1080 1100	Al99.5 Al99.7 Al99.8 Al99	3.0255 3.0275 3.0285 3.0205	1B 1A 1C	1050 A 1080A 1200	4507 4508 4509 3567	Al99.5 Al99.7 Al99.8 Al99.0	4007 4005 4004 4010	A1050 A1070 A1080 A1100 A1200
AlCu6BiPb AlCu4SiMg AlCu4MgSi AlCu4Mg1 AlCu4PbMg AlCu2MgNi	2011 2014 2017A 2024 2030 2618A	2011 2014 (2017) 2024 (2618)	AlCuBiPb AlCuSiMn AlCuMg1 AlCuMg2 (AlCuMgPb)	3.1655 3.1255 3.1325 3.1355 (3.1645)	FC1 (H15)	2011 (2014A) 2618A	6362 3581 3579 3583	AlCu6BiPb AlCu4SiMn AlCu4Mg1,5 (AlCu4MgPb)	4355 4338	A2011 A2014 (A2017) A2024
AlMn1Cu AlMn1Mg1 AlMn1Mg0,5 AlMn0,5Mg0,5	3003 3004 3005 3105	3003 3004 3005 3105	AlMnCu AlMn1Mg1 AlMn1Mg0,5 AlMn0,5Mg0,5	3.01517 3.0526 3.0525 3.0505	(N3) (N31)	(3103)	7788 6361	(AlMn)	(4054)	A3003 A3004 A3005 A3105
AIMg1 AIMg1,5 AIMg2,5 AIMg5 AIMg4,5Mn AIMg4 AIMg2 AIMg3Mn AIMg3	5005 5050 5052 5056A 5083 5086 5251 5454 5754	5005 5050 5052 (5056) 5083 5086 5454	(AIMg1) (AIMg1,5) AIMg2,5 AIMg5 AIMg4,5Mn AIMg4Mn AIMg2Mn0,3 AIMg2,7Mn AIMg3	(3.3315) (3.3316) 3.3523 3.3555 3.3547 3.3545 3.3525 3.3537 3.3535	N41 N6 N8 N4 N51	5005 5056A 5083 5251 5454	5764 3573 3574 3576 7790 5452 4511 7789	(AIMg1) (AIMg2,5) AIMg4,5Mn AIMg4Mn AIMg2,7Mn AI3Mg	(4106) (4120) (4140)	A5005 A5052 A5056 A5083 A5086 A5454
AISiMg AIMgSi AIMg1SiCu AISi1Mg AIZn4,5Mg1 AIZn6MqCu	6005A 6060 6061 6082 6106*** 7020 7075	(6063) 6061 (7005) 7075	AIMgSi0,7 AIMgSi0,5 AIMg1SiCu AIMgSi1 AIZn4,5Mg1 AIZnMgCu1,5	3.3210 3.3206 3.3211 3.2315 3.4335 3.4365	(H9) H20 H30	(6063) 6061 6082 7020 7075	(3569) 6170 3571 7791 3735	AIMgSi07 AIMgSi0,5 AIMgSi1Mn AIZn4,5Mg1 AIZn6MgCu1,5	4103 4212 4425	(A6063) A6061 A7075

Designations shown in brackets indicate that the alloy referred to is similar to, but not identical.

Standard values are quoted in this table. As is well known, these values can be affected by processing conditions, modifications, added materials and environmental influences. They are compiled on the basis of present experience and can only be regarded as non-binding. We cannot accept any responsibility for their accuracy.

^{*}UNS (Unified Numbering System): Under this system the normal ASTM designation is prefixed "A9": e.g. ASTM 1100 becomes A9 1100 under the UNS system.

Aluminium Commercial Coil (AA 1100 H14)

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51		Cu	IVIII	1 115	CI	211			Each	Total	7114
1100 Min	Si +	- Fe	0.05	-	-	_	-	-	-	-	-	_
Max	0.9	95	0.20	0.05	-	-	0.10	-	-	0.05	0.15	Balance

Applications

Electronic Component, Pharmaceutical, Containers, Appliances, Electrical-Industry, Signboard, Name Plates, Packaging, Building Architecture, Stamping Parts, Boilermaking, Construction Industry, General Sheet Fabrication.

Typical Physical Properties

Density g/cm³ : 2.71 Melting range °C : 643 - 657

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.6 Modulus of elasticity MPa^(*) : 69 000

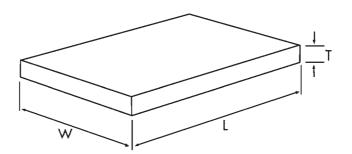
Thermal conductivity

(0 to 100 °C) - W/m °C : O/h18 Temper: 222 Resistivity at 20 °C - μΩ cm : O/H18 Temper: 2.9

Specific heat (0 to 100 °C)

J/kg °C : 950

 $1 \text{ MPa} = 1 \text{ N/mm}^2$


(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Weight
0.20 mm	1219 mm	1 to 7 tons
0.25 mm	1219 mm	1 to 7 tons
0.30 mm	1219 mm	1 to 7 tons
0.40 mm	1219 mm	1 to 7 tons
0.50 mm	1219 mm	1 to 7 tons
0.60 mm	1219 mm	1 to 7 tons
0.70 mm	1219 mm	1 to 7 tons
0.80 mm	1219 mm	1 to 7 tons
1		

Thickness (T)	Width (W)	Weight
0.90 mm	1219 mm	1 to 7 tons
1.00 mm	1219 mm	1 to 7 tons
1.25 mm	1219 mm	1 to 7 tons
1.50 mm	1219 mm	1 to 7 tons
2.00 mm	1219 mm	1 to 7 tons
2.50 mm	1219 mm	1 to 7 tons
3.00 mm	1219 mm	1 to 7 tons

We slitt any width from 10mm to 550mm. There are no minimum quantities.

Aluminium Commercial Sheet (AA 1100 H14)

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Other		Alu
70	51	10	Cu	1411	1418		211			Each	Total	711u
1100 Min	Si +	- Fe	0.05	-	-	-	-	-	-	-	-	-
Max	0.9	95	0.20	0.05	-	-	0.10	-	-	0.05	0.15	Balance

Applications

Electronic Component, Pharmaceutical, Containers, Appliances, Electrical-Industry, Signboard, Name Plates, Packaging, Building Architecture, Stamping Parts, Boilermaking, Construction Industry, General Sheet Fabrication.

Typical Physical Properties

Density g/cm 3 : 2.71 Melting range $^{\circ}$ C : 643 - 657

Coefficient of linear expansion

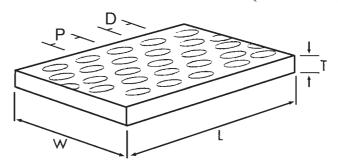
(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.6 Modulus of elasticity $MPa^{(*)}$: 69 000

Thermal conductivity

 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : & O/h18 \ Temper: 222 \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : & O/H18 \ Temper: 2.9 \\ \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 950


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
0.4 mm	4 ft	8 ft
0.5 mm	4 ft	8 ft
0.6 mm	4 ft	8 ft
0.7 mm	4 ft	8 ft
0.8 mm	4 ft	8 ft
0.9 mm	4 ft	8 ft
1 mm	4 ft	8/12 ft
1.2 mm	4 ft	8/12 ft
1.5 mm	4 ft	8/12 ft

Thickness (T)	Width (W)	Length (L)
1.6 mm	4 ft	8/12 ft
2 mm	4 ft	8/12 ft
2.5 mm	4 ft	8/12 ft
3 mm	4 ft	8/12 ft
4 mm	4 ft	8/12 ft
4.5 mm	4 ft	8/12 ft
5 mm	4 ft	8/12 ft
6 mm	4 ft	8/12 ft

Aluminium Perforated Sheet (AA 1100)

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Other		Alu
70	51		Cu	1411	1418	CI	211	11		Each	Total	7114
1100 Min	Si +	- Fe	0.05	-	-	-	-	-	-	-	-	_
Max	0.9	95	0.20	0.05	-	-	0.10	-	-	0.05	0.15	Balance

Applications

Ventilation Panel, Building Architecture, Packaging, Containers, Vacuum Boxes, Household-appliance Fittings, Equipment Cover, Food Industries, Decorative Panels, Construction Industry.

Typical Physical Properties

Density g/cm³ : 2.71 Melting range °C : 643 - 657

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 000

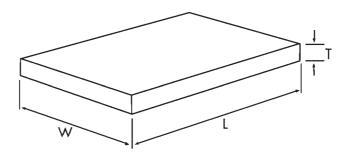
Thermal conductivity

 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : & O/h18 \mbox{ Temper: } 222 \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : & O/H18 \mbox{ Temper: } 2.9 \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 950

 $1 \text{ MPa} = 1 \text{ N/mm}^2$


(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)	Diameter (D)	Pitch (P)
0.5 mm	4 ft	8 ft	3 mm	5 mm
0.6 mm	4 ft	8 ft	3 mm	5 mm
0.7 mm	4 ft	8 ft	3 mm	5 mm
0.8 mm	4 ft	8 ft	3 mm	5 mm
1 mm	4 ft	8 ft	3 mm	5 mm
1 mm	4 ft	8 ft	5 mm	8 mm
1.2 mm	4 ft	8 ft	2.5 mm	5 mm
1.2 mm	4 ft	8 ft	3 mm	5 mm
1.2 mm	4 ft	8 ft	5 mm	8 mm
1.5 mm	4 ft	8 ft	3 mm	5 mm
1.5 mm	4 ft	8 ft	5 mm	8 mm
2 mm	4 ft	8 ft	3 mm	5 mm
2 mm	4 ft	8 ft	5 mm	8 mm
3 mm	4 ft	8 ft	3 mm	5 mm

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Sheet-Plate (AA 2024 T351)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51		- Cu		1718					Each	Total	1114
Min	-	-	3.8	0.30	1.2	-	-	-	Zr + Ti	-	-	-
Max	0.50	0.50	4.9	0.9	1.8	0.10	0.25	0.15	0.20	0.05	0.15	Balance

Applications

Aircraft Fitting, Gears and Shafts, Clock Parts, Socket, Hydraulics Valve, Computer Parts, Couplings, Missile Parts, Ammunitions Parts, Equipment Components, Precision Engineering, Military Equipment, Machine Building. **Typical Physical Properties**

Density g/cm³ : 2.77 Melting range °C : 500 - 638

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 22.9 Modulus of elasticity MPa^(*) : 73 000

Thermal conductivity

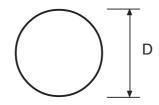
(0 to 100 °C) - W/m °C : T3 Temper: 120 Resistivity at 20 °C - $\mu\Omega$ cm : T3 Temper: 5.7

Specific heat (0 to 100 °C)

J/kg °C : 920

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Width (W)	Length (L)
6mm	4 ft	8 ft
1/4 "	4 ft	8 ft
8 mm	4 ft	8 ft
9 mm	4 ft	8 ft
3/8 "	4 ft	8 ft
10 mm	4 ft	8 ft
12 mm	4 ft	8 ft
1/2 "	4 ft	8 ft
5/8 "	4 ft	8 ft
3/4 "	4 ft	8 ft
20 mm	4 ft	8 ft
7/8 "	4 ft	8 ft
1 "	4 ft	8 ft

Thickness (T)	Width (W)	Length (L)		
29 mm	4 ft	8 ft		
1.1/4 "	4 ft	8 ft		
35 mm	4 ft	8 ft		
1.1/2 "	4 ft	8 ft		
1.3/4 "	4 ft	8 ft		
2 mm	4 ft	8 ft		
2.1/2 "	4 ft	8 ft		
70 mm	4 ft	8 ft		
3 "	4 ft	8 ft		
90 mm	4 ft	8 ft		
4 "	4 ft	8 ft		
5 "	4 ft	8 ft		
6 "	4 ft	8 ft		

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Round Rod (AA 2024 T351/T4)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70			- Cu	1,111	1118		211			Each	Total	1114
Min	_	-	3.8	0.30	1.2	-	-	-	Zr + Ti	_	-	-
Max	0.50	0.50	4.9	0.9	1.8	0.10	0.25	0.15	0.20	0.05	0.15	Balance

Applications

Aircraft Fitting, Gears and Shafts, Clock Parts, Rivets, Sockets, Hydraulics Valve, Computer Parts, Ammunitions Parts, Pistons Equipment Components, Precision Engineering.

Typical Physical Properties

Density g/cm³ : 2.77
Melting range °C : 500 - 638
Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 22.9 Modulus of elasticity MPa^(*) : 73 000

Thermal conductivity

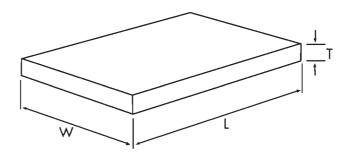
(0 to 100 °C) - W/m °C : T3 Temper: 120 Resistivity at 20 °C - $\mu\Omega$ cm : T3 Temper: 5.7

Specific heat (0 to 100 °C)

J/kg °C : 920

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Diameter (D)	Length (L)
1/4 "	16 ft
3/8 "	16 ft
1/2 "	16 ft
5/8 "	16 ft
3/4 "	16 ft
7/8 "	16 ft
1 "	16 ft
1.1/4 "	16 ft
1.1/2 "	16 ft
1.3/4 "	16 ft
2 "	16 ft

Diameter (D)	Length (L)
2.1/4 "	16 ft
2.1/2 "	16 ft
3 "	16 ft
3.1/2 "	16 ft
4 "	16 ft
4.1/2 "	16 ft
5 "	12 ft
6 "	12 ft
7 "	12 ft
8 "	12 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Sheet-Plate (AA 5052 H32)

Chemical Composition

According to BS EN 573-1

	%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
	70	D1	10	Cu	1411	1418		211			Each	Total	Mu
N	A in	-	-	-	-	2.2	0.15	_	-	-	_	-	-
M.	1 ax	0.25	0.40	0.10	0.10	2.8	0.35	0.10	-	-	0.05	0.15	Balance

Applications

Chemical Industry, Packaging-Equipment, Electronic Component, Household-Appliance, Stamping Parts, Signboard, Name Plates, Hydraulics, General Sheet Fabrication, Construction Industry.

Typical Physical Properties

Density g/cm 3 : 2.68 Melting range $^{\circ}$ C : 605 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.8 Modulus of elasticity $MPa^{(*)}$: 70 000

Thermal conductivity

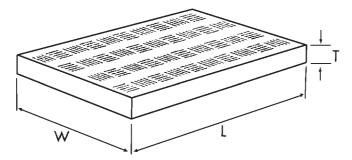
 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : & O/H38 \ Temper: \ 138 \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : & O/H38 \ Temper: \ 4.9 \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Width (W)	Length (L)		
0.5 mm	4 ft	8/12 ft		
0.6 mm	4 ft	8/12 ft		
0.7 mm	4 ft	8/12 ft		
0.8 mm	4 ft	8/12 ft		
1 mm	4 ft	8/12 ft		
1.2 mm	4 ft	8/12 ft		
1.5 mm	4 ft	8/12 ft		
1.6 mm	4 ft	8/12 ft		
2 mm	4 ft	8/12 ft		
2.3 mm	4 ft	8/12 ft		
2.38 mm	4 ft	8/12 ft		
2.5 mm	4 ft	8/12 ft		

Thickness (T)	Width (W)	Length (L)		
3 mm	4 ft	8/12 ft		
4 mm	4 ft	8/12 ft		
4.5 mm	4 ft	8/12 ft		
5 mm	4 ft	8/12 ft		
6 mm	4 ft	8/12 ft		
6 mm	4 ft	8/12 ft		
8 mm	4 ft	8/12 ft		
9 mm	4 ft	8/12 ft		
9.5 mm	4 ft	8/12 ft		
10 mm	4 ft	8/12 ft		
12 mm	4 ft	8/12 ft		

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Checkered Plate (AA 5052 / 5 Bar Pattern)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70			Cu	IVIII	1415		211	11		Each	Total	7114
Min	-	-	-	-	2.2	0.15	-	-	-	-	-	-
Max	0.25	0.40	0.10	0.10	2.8	0.35	0.10	-	-	0.05	0.15	Balance

Applications

Abrasion for Lifts, Trucks and Flooring, Decorative Panels, Chemical Industry, Refinery Industry, Metal Staircase, Structured Staircase, Equipment Manufacturing, General Sheet Fabrication.

Typical Physical Properties

Density g/cm 3 : 2.68 Melting range $^{\circ}$ C : 605 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.8 Modulus of elasticity MPa^(*) : 70 000

Thermal conductivity

(0 to 100 °C) - W/m °C : O/H38 Temper :138 Resistivity at 20 °C - $\mu\Omega$ cm : O/H38 Temper :4.9

Specific heat (0 to 100 °C)

J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)				
3 mm	4/5 ft	8/12 ft				
4.5 mm	4/5 ft	8/12 ft				
6 mm	4/5 ft	8/12 ft				
6.35 mm	4/5 ft	8/12 ft				

Aluminium Perforated Sheet (AA 5052)

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Oth		Alu
70			Cu	IVIII	1418					Each	Total	7110
Min	-	-	-	-	2.2	0.15	-	-	-	-	-	-
Max	0.25	0.40	0.10	0.10	2.8	0.35	0.10	-	-	0.05	0.15	Balance

Applications

Ventilation Panel, Building Architecture, Packaging, Containers, Vacuum Boxes, Chemical Industry, Household-appliance Fittings, Equipment Covers, Food Industries, Decorative Panels, Construction Industry.

Typical Physical Properties

Density g/cm³ : 2.68 Melting range °C : 605 - 650

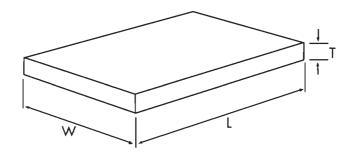
Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.8 Modulus of elasticity $MPa^{(*)}$: 70 000

Thermal conductivity

 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : \mbox{O/H38 Temper: 138} \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : \mbox{O/H38 Temper: 4.9} \end{array}$

Specific heat (0 to 100 °C)


J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)	Diameter (D)	Pitch (P)
0.5 mm	4 ft	8 ft	3 mm	5 mm
0.6 mm	4 ft	8 ft	3 mm	5 mm
0.7 mm	4 ft	8 ft	3 mm	5 mm
0.8 mm	4 ft	8 ft	3 mm	5 mm
1 mm	4 ft	8 ft	3 mm	5 mm
1 mm	4 ft	8 ft	5 mm	8 mm
1.2 mm	4 ft	8 ft	3 mm	5 mm
1.2 mm	4 ft	8 ft	5 mm	8 mm
1.5 mm	4 ft	8 ft	3 mm	5 mm
1.5 mm	4 ft	8 ft	5 mm	8 mm
2 mm	4 ft	8 ft	3 mm	5 mm
2 mm	4 ft	8 ft	5 mm	8 mm
3 mm	4 ft	8 ft	3 mm	5 mm

Aluminium Alloy Sheet-Plate (AA 5083 H112/H321) with D.N.V. Cert

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	zn Ti	-	Ot	her	Alu
,,				1,111	11-8					Each	Total	1224	
Min	-	-	-	0.40	4.0	0.05	-	-	-	-	-	-	
Max	0.40	0.40	0.10	1.0	4.9	0.25	0.25	0.15	-	0.05	0.15	Balance	

Applications

Shipbuilding, Boiler Making, Chemical Industry and Cryogenics, Welded Structures, Structural Base Plate, Transport & Conveyor Technology, Electronic Industry, Mechanical Engineering Industry, Precision Engineering.

Typical Physical Properties

Density g/cm 3 : 2.66 Melting range $^{\circ}$ C : 580 - 640

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.9 Modulus of elasticity MPa^(*) : 71 000

Thermal conductivity

 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : \mbox{O/H32 Temper: } 120 \\ \mbox{Resistivity at } 20 \ ^{\circ}\mbox{C} - \mu\Omega \ \mbox{cm} & : \mbox{O/H32 Temper: } 6.0 \end{array}$

Specific heat (0 to 100 °C)

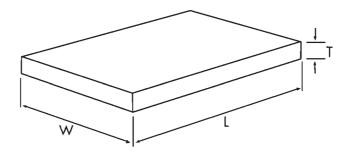
J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
2 mm	4 ft	8/12 ft
2.5 mm	4 ft	8/12 ft
3 mm	4 ft	8/12 ft
4 mm	4 ft	8/12 ft
4.5 mm	4 ft	8/12 ft
3/16 "	4 ft	8/12 ft
5 mm	4 ft	8/12 ft
6 mm	4 ft	8/12 ft
1/4 "	4 ft	8/12 ft
7 mm	4 ft	8/12 ft
8 mm	4 ft	8/12 ft
9 mm	4 ft	8/12 ft
3/8 "	4 ft	8/12 ft
10 mm	4 ft	8/12 ft
12 mm	4 ft	8/12 ft
1/2 "	4 ft	8/12 ft
15 mm	4 ft	8/12 ft
16 mm	4 ft	8/12 ft
19 mm	4 ft	8/12 ft

20 mm


Thickness (T)	Width (W)	Length (L)
7/8 "	4 ft	8/12 ft
25 mm	4 ft	8/12 ft
1 "	4 ft	8/12 ft
28 mm	4 ft	8/12 ft
30 mm	4 ft	8/12 ft
1.1/4 "	4 ft	8/12 ft
35 mm	4 ft	8/12 ft
1.1/2 "	4 ft	8/12 ft
40 mm	4 ft	8/12 ft
1.3/4 "	4 ft	8/12 ft
50 mm	4 ft	8/12 ft
2 "	4 ft	8/12 ft
60 mm	4 ft	8/12 ft
2.1/2 "	4 ft	8/12 ft
65 mm	4 ft	8/12 ft
70 mm	4 ft	8/12 ft
3 "	4 ft	8/12 ft
4 "	4 ft	8/12 ft
5 "	4 ft	8/12 ft

Superfix (Singapore) Pte Ltd

8/12 ft

126 Genting Lane, Singapore 349576

Aluminium Alloy Sheet-Plate (AA 5083 H112/H321) With D.N.V. Cert

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Ti	Zn Ti	n Ti	_	Ot	her	Alu
70			Cu	17111	1415					Each	Total	7114			
Min	-	-	-	0.40	4.0	0.05	-	-	-	-	-	-			
Max	0.40	0.40	0.10	1.0	4.9	0.25	0.25	0.15	-	0.05	0.15	Balance			

Applications

Shipbuilding, Boiler Making, Chemical Industry and Cryogenics, Welded Structures, Structural Base Plate, Transport & Conveyor Technology, Electronic Industry, Mechanical Engineering Industry, Precision Engineering.

Typical Physical Properties

Density g/cm 3 : 2.66 Melting range $^{\circ}$ C : 580 - 640

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.9 Modulus of elasticity MPa^(*) : 71 000

Thermal conductivity

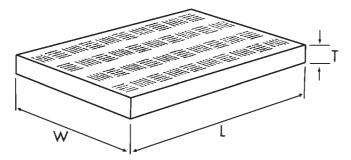
 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : \mbox{O/H32 Temper: } 120 \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : \mbox{O/H32 Temper: } 6.0 \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Width (W)	Length (L)
3 mm	1.5 m	6 m
4 mm	1.5 m	6 m
5 mm	1.5 m	6 m
6 mm	1.5 m	6 m
8 mm	1.5 m	6 m
9 mm	1.5 m	6 m
10 mm	1.5 m	6 m
12 mm	1.5 m	6 m
16 mm	1.5 m	6 m
20 mm	1.5 m	6 m
25.5 mm	1.5 m	6 m

Thickness (T)	Width (W)	Length (L)
3 mm	2 m	6 m
4 mm	2 m	6 m
5 mm	2 m	6 m
6 mm	2 m	6 m
7 mm	2 m	6 m
8 mm	2 m	6 m
10 mm	2 m	6 m
12 mm	2 m	6 m
16 mm	2 m	6 m
20 mm	2 m	6 m

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Checkered Plate (AA 5754 / 5 Bar Pattern)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Zn Ti	Zn Ti	_	Ot	her	Alu
70			Cu	IVIII	1415		211			Each	Total	7114	
Min	-	-	-	-	2.6	-	_	-	Mn + Cr =	-	-	_	
Max	0.40	0.40	0.10	0.50	3.6	0.30	0.20	0.15	0.10 - 0.6	0.05	0.15	Balance	

Applications

Abrasion for Lifts, Trucks and Flooring, Decorative Panels, Chemical Industry, Refinery Industry, Metal Staircase, Structural Staircase, General Sheet Fabrication, Equipment Manufacturing.

Typical Physical Properties

Density g/cm 3 : 2.67 Melting range $^{\circ}$ C : 590 - 645

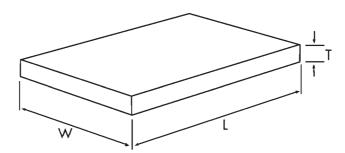
Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.8 Modulus of elasticity MPa^(*) : 70 000

Thermal conductivity

 $\begin{array}{lll} \mbox{(0 to 100 °C) - W/m °C} & : \mbox{O/H34 Temper: } 132 \\ \mbox{Resistivity at 20 °C - $\mu\Omega$ cm} & : \mbox{O/H34 Temper: } 5.3 \end{array}$

Specific heat (0 to 100 °C)


J/kg °C : 945

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
3 mm	4/5 ft	8/12 ft
4.5 mm	4/5 ft	8/12 ft
6 mm	4/5 ft	8/12 ft
6.35 mm	4/5 ft	8/12 ft

Aluminium Econ-O-Plate (AA 6061 T6/T6511)

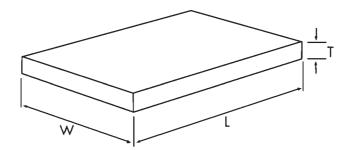
Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Ti	Ti	Ti	Ti	Ti	Zn Ti	Ti	_	Other		Alu
70		10	Cu	17111	1415					Each	Total	711u							
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-							
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance							

Applications
Automation Assembly, Processing-
Machinery, Electronic Engineering, Semi-
Conductor, Equipment Manufacturing,
Structural Base Plate, Aircraft Fittings,
Camera Parts, Mechanical Engineering,
Jig & Fixtures, Material Handling,
Precision Engineering, Construction
Industry.

Typical Physical Properties	
Tensile strength	
Ultimate (KSI)	38 to 42
Yield (KSI)	35 to 38
Elongation ³	
Percent Min. in 2 inch or 4D ⁴	8 to 10
Typical Brinell Hardness	
(500 kg Load/ 10mm ball)	95
Typical Ultimate	
Shearing Strength (KSI	30
Longitudinal Direction	
Min Ultimate (PSI)	38,000
Min Yield (PSI)	35,000
Specitications	ASTM B 221
	ASME SB 221


Thickness (T)	Width (W)	Length (L)
3/8 "	8 "	12 ft
3/8 "	10 "	12 ft
3/8 "	12 "	12 ft
1/2 "	8 "	12 ft
1/2 "	10 "	12 ft
1/2 "	12 "	12 ft
5/8 "	8 "	12 ft
5/8 "	10 "	12 ft
5/8 "	12 "	12 ft
3/4 "	8 "	12 ft
3/4 "	10 "	12 ft
3/4 "	12 "	12 ft

Thickness (T)	Width (W)	Length (L)
1 "	19 "	12 ft
1.1/4 "	18 "	12 ft
1.1/2 "	18 "	12 ft
1.3/4 "	18 "	12 ft
2 "	16 "	12 ft
2.1/4 "	16 "	12 ft
2.1/2 "	16 "	12 ft
2.3/4 "	16 "	12 ft
3 "	16 "	12 ft
3.1/4 "	16 "	12 ft
3.1/2 "	14 "	12 ft
4 "	16 "	12 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Sheet-Plate (AA 6061 T6/T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70			- Cu	1,111	1718		211			Each	Total	7110
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automation Assembly, Processing-Machinery, Electronic Engineering, Disc Drive Industry, Semi-Conductor Equipment manufacturing, Structural Base Plate, Aircraft Fittings, Camera Parts, Mechanical Engineering, General Jig & Fixture, Material Handling, Precision Engineering, Connstruction Industry.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal conductivity

 $\begin{array}{cccc} (0 \text{ to } 100 \text{ °C}) \text{ - W/m °C} & : & T6 \text{ Temper: } 167 \\ \text{Resistivity at } 20 \text{ °C} \text{ - } \mu\Omega \text{ cm} & : & T6 \text{ Temper: } 4.0 \end{array}$

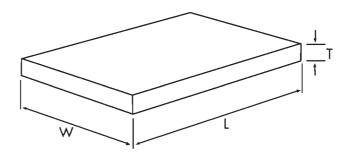
Specific heat (0 to 100 °C)

J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
1 mm	4 ft	8/12 ft
1.5 mm	4 ft	8/12 ft
2.0 mm	4 ft	8/12 ft
2.5 mm	4 ft	8/12 ft
3 mm	4 ft	8/12 ft
1/8 "	4 ft	8/12 ft
4.06 mm	4 ft	8/12 ft
3/16 "	4 ft	8/12 ft
5 mm	4 ft	8/12 ft
6 mm	4 ft	8/12 ft
1/4 "	4 ft	8/12 ft
8 mm	4 ft	8/12 ft
9 mm	4 ft	8/12 ft
3/8 "	4 ft	8/12 ft
10 mm	4 ft	8/12 ft


Thickness (T)	Width (W)	Length (L)		
12 mm	4 ft	8/12 ft		
1/2 "	4 ft	8/12 ft		
14 mm	4 ft	8/12 ft		
15 mm	4 ft	8/12 ft		
5/8 "	4 ft	8/12 ft		
16 mm	4 ft	8/12 ft		
3/4 "	4 ft	8/12 ft		
20 mm	4 ft	8/12 ft		
7/8 "	4 ft	8/12 ft		
1 "	4 ft	8/12 ft		
1.1/8 "	4 ft	8/12 ft		
30 mm	4 ft	8/12 ft		
1.1/4 "	4 ft	8/12 ft		
35 mm	4 ft	8/12 ft		
1.1/2 "	4 ft	8/12 ft		

.../ cont on page 22

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

cont' Aluminium Alloy Sheet-Plate (AA 6061 T6/T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51	10	Cu	17111	1418					Each	Total	7114
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
Max	0.8	0.7	0.40	1.50	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automation Assembly, Processing-Machinery, Electronic Engineering, Disc Drive Industry, Semi-Conductor Equipment manufacturing, Structural Base Plate, Aircraft Fittings, Camera Parts, Mechanical Engineering, General Jig & Fixture, Material Handling, Precision Engineering, Connstruction Industry.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

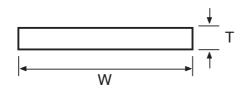
(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.6 Modulus of elasticity $MPa^{(*)}$: 69 500

Thermal conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

J/kg °C : 940


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
1.3/4 "	4 ft	8/12 ft
2 "	4 ft	8/12 ft
2.1/4 "	4 ft	8/12 ft
2.1/2 "	4 ft	8/12 ft
2.3/4 "	4 ft	8/12 ft
3 "	4 ft	8/12 ft
3.1/2 "	4 ft	8/12 ft

Thickness (T)	Width (W)	Length (L)
4 "	4 ft	8/12 ft
4.1/2 "	4 ft	8/12 ft
5 "	4 ft	8/12 ft
5.1/2 "	4 ft	8/12 ft
6 "	4 ft	8/12 ft
7 "	4 ft	8/12 ft
8 "	4 ft	8/12 ft
10 "	4 ft	8/12 ft

Aluminium Alloy Flat Bar (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

	%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
	70			Cu	IVIII	l''s		211	11		Each	Total	7114
Ī	Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	_
	Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automation Assembly, Processssing-Machinery, Electronic Engineering, Disc Drive Industry, Semi-conductor Equipment Manufacturing, Structural Base Plate, Aircraft Fittings, Camera Parts, Mechanical Engineering, General Jig & Fixture, Material Handling, Precision Engineering, Construction Industry

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity Mpa^(*) : 69 500

Thermal conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
1/8 "	3/8 "	16 ft
	1/2 "	16 ft
	5/8 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft

Thickness (T)	Width (W)	Length (L)
4.5 mm	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
3/16 "	3/8 "	16 ft
	1/2 "	16 ft
	5/8 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1 -	ont on page 24

.../ cont on page 24

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

cont' Aluminium Alloy Flat Bar (AA 6061 T6)

(refer to page 24 for Technical Specification)

Thickness (T)	Width (W)	Length (L)
3/16 "	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
6 mm	1.1/4 "	16 ft
	1.1/2 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
1/4 "	5/16 "	16 ft
	3/8 "	16 ft
	1/2 "	16 ft
	5/8 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.3/8 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
5/16 "	1/2 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft

Thickness (T)	Width (W)	Length (L)
5/16 "	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
3/8 "	1/2 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
12 mm	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
1/2 "	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft

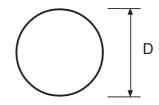
.../ cont on page 26

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

cont' Aluminium Alloy Flat Bar (AA 6061 T6)

(refer to page 24 for Technical Specification)


Thickness (T)	Width (W)	Length (L)
5/8 "	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft
3/4 "	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
1 "	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft
1.1/4 "	1.1/2 "	16 ft
1.1/4	1.1/2	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
	7	1011

	VV	
Thickness (T)	Width (W)	Length (L)
1.1/2 "	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
1.3/4 "	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
2 "	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft
2.1/2 "	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft
3 "	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
	8 "	16 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Round Rod (AA 6061 T6/T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Other		Alu
70	51	10	Cu	17111	1415					Each	Total	7110
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Valve Seats, Seal Rings, Couplings, Camera Lens, Electrical-Connectors, Magneto Parts, Brake Pistons, Retaining Rings, Ball Valve Seats, Bearing Cages, Sockets, Clamp Rings, Bearings, Distributor Valves, High Heat Insulator Bushings, Lantern Rings.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal conductivity

 $\begin{array}{cccc} (0 \text{ to } 100 \text{ °C}) \text{ - W/m °C} & : & T6 \text{ Temper: } 167 \\ \text{Resistivity at } 20 \text{ °C} \text{ - } \mu\Omega \text{ cm} & : & T6 \text{ Temper: } 4.0 \end{array}$

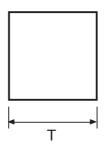
Specific heat (0 to 100 °C)

J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Length (L)
16 ft


Diameter (D)	Length (L)
1.3/4 "	16 ft
1.7/8 "	16 ft
2 "	16 ft
2.1/8 "	16 ft
2.1/4 "	16 ft
2.3/8 "	16 ft
2.1/2 "	16 ft
2.3/4 "	16 ft
3 "	16 ft
3.1/4 "	16 ft
3.1/2 "	16 ft
93.5 mm	16 ft
3.3/4 "	16 ft
4 "	16 ft
4.1/4 "	16 ft
4.1/2 "	16 ft
4.3/4 "	16 ft

Diameter (D)	Length (L)
5 "	12 ft
5.1/4 "	12 ft
5.1/2"	12 ft
5.3/4 "	12 ft
6 "	12 ft
6.1/2 "	12 ft
7 "	12 ft
7.1/2 "	12 ft
8 "	12 ft
8.1/2 "	12 ft
9 "	12 ft
9.1/2 "	12 ft
10 "	8 ft
10.1/2 "	8 ft
11 "	8 ft
12 "	6 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Square Bar (AA 6061 T6/T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Otl	Other		Alu
70			Cu	1411	1418		211	11		Each	Total	7114	
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-	
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance	

Applications

Automation Assembly, Processing-Machinery, Electronic Industry, Disc Drive Industry, Semi-Conductor Equipment Manufacturing, Structural Base Plate, Aircraft Fittings, Camera Parts, Mechanical Engineering, Jig & Fixtures, Precision Engineering, Construction Industry.

Typical Physical Properties

Density g/cm³ : 2.70 Melting range °C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.6 Modulus of elasticity $MPa^{(*)}$: 69 500

Thermal conductivity

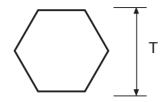
 $\begin{array}{cccc} (0 \text{ to } 100 \text{ °C}) \text{ - W/m °C} & : & T6 \text{ Temper: } 167 \\ \text{Resistivity at } 20 \text{ °C} \text{ - } \mu\Omega \text{ cm} & : & T6 \text{ Temper: } 4.0 \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Length (L)
1/4 "	16 ft
5/16 "	16 ft
3/8 "	16 ft
10 mm	16 ft
12 mm	16 ft
1/2 "	16 ft
5/8 "	16 ft
3/4 "	16 ft
7/8 "	16 ft
1 "	16 ft
1.1/4 "	16 ft
1.1/2 "	16 ft
1.3/4 "	16 ft
2 "	16 ft

Thickness (T)	Length (L)
2.1/4 "	16 ft
2.1/2 "	16 ft
2.3/4 "	16 ft
3 "	16 ft
3.1/4 "	16 ft
3.1/2 "	16 ft
3.3/4 "	16 ft
4 "	16 ft
4.1/2 "	16 ft
5 "	12 ft
6 "	12 ft
7 "	12 ft
8 "	12 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Hexagon Bar (AA 6061 T6)

Chemical Composition

According to BS EN573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Other		Alu
70	51	10	Cu	1411	1418		211	11		Each	Total	711u
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Household Appliances, Electrical Industry, Precision Parts, Couplings, Valve Seats, Seal Rings, Retaining Ring, Socket Bearing Cages, Bearings, Magneto Parts, High Heat Insulator Bushings.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

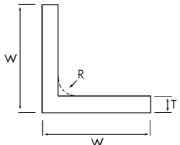
(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

J/kg °C : 940


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Length (L)
1/4 "	16 ft
5/16 "	16 ft
3/8 "	16 ft
7/16 "	16 ft
1/2 "	16 ft
9/16 "	16 ft
5/8 "	16 ft
3/4 "	16 ft

Thickness (T)	Length (L)
7/8 "	16 ft
1 "	16 ft
1.1/8 "	16 ft
1.1/4 "	16 ft
1.1/2 "	16 ft
1.3/4 "	16 ft
2 "	16 ft

Aluminium Alloy Equal Angle Bar (AA 6061 T6)

Chemical Composition

According to BS EN573-1

%	Si	Fe Cu	Cu	Mn	Mg	Cr	Zn	Zn Ti	_	Ot	her	Alu
70			Cu	1411	1418					Each	Total	711 u
Min	0.40	-	0.15	_	0.8	0.04	_	_	-			
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Processing Machinery, Electrical Engineering, Production Material Handling, Construction Industry, Rail Guides, Equipment Manufacturing, Automation Assembly, Packaging Machinery, Transport & Conveyor.

Typical Physical Properties

Density g/cm³ : 2.70 Melting range °C : 575 - 650 Coefficient of linear expansion $(0 \text{ to } 100 \text{ °C}) - \text{°C}^{-1} \times 10^6$: 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - μΩ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

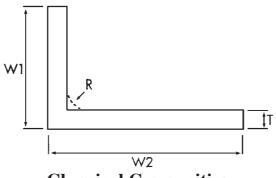
J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
2 mm	1/2 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/2 "	16 ft
	2 "	16 ft
3 mm	1/2 "	16 ft
	5/8 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
4.5 mm	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft

4 "


Thickness (T)	Width (W)	Length (L)
6 mm	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
8 mm	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
9 mm	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
12 mm	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft

Superfix (Singapore) Pte Ltd

16 ft

126 Genting Lane, Singapore 349576

Aluminium Alloy Unequal Bar (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn Ti		_	Ot	her	Alu
70	51		- Cu		1118					Each	Total	7114
Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automatic Assembly, Electronic Industry, Disc Drive Industry, Semi-Conductor, Equipment Manufacturing, Structural Base Plate, Aircraft Fittings, Camera Parts, Mechanical Engineering, Jig & Fixture, Production Material Handling.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal Conductivity

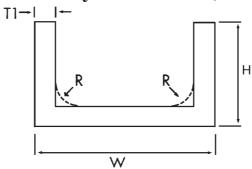
(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

J/Kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli\


Thickness (T)	Width (W1)	Width (W2)	Length (L)
3 mm	1/2 "	1 "	16 ft
	3/4 "	1 "	16 ft
	3/4 "	1.1/2 "	16 ft
	1 "	1.1/2 "	16 ft
	1 "	2 "	16 ft
	1 "	3 "	16 ft
	1 "	4 "	16 ft
	1.1/2 "	2 "	16 ft
	1.1/2 "	2.1/2 "	16 ft
	1.1/2 "	3 "	16 ft
	1.1/2 "	4 "	16 ft
	2 "	2.1/2 "	16 ft
	2 "	3 "	16 ft
	2 "	4 "	16 ft
4.5 mm	1 "	2 "	16 ft
	1 "	3 "	16 ft
	1.1/2 "	2 "	16 ft
	1.1/2 "	2.1/2 "	16 ft
	1.1/2 "	3 "	16 ft
	1.1/2 "	4 "	16 ft
	2 "	2.1/2 "	16 ft

Thickness (T)	Width (W1)	Width (W2)	Length (L)
4.5 mm	3 "	3 "	16 ft
	4 "	4 "	16 ft
6 mm	1 "	2 "	16 ft
	1 "	3 "	16 ft
	1.1/2 "	2 "	16 ft
	1.1/2 "	2.1/2 "	16 ft
	1.1/2 "	3 "	16 ft
	2 "	2.1/2 "	16 ft
	2 "	3 "	16 ft
	2 "	4 "	16 ft
	2 " 2 " 2 " 2 "	6 "	16 ft
	2 "	4 "	16 ft
	2 "	5 "	16 ft
	2 "	6 "	16 ft
3/8 "	2 "	3 "	16 ft
	2 " 2 "	4 "	16 ft
	2 "	5 "	16 ft
	2 " 3 "	6 "	16 ft
		4 "	16 ft
	3 "	5 "	16 ft
	3 "	6 "	16 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy U Channel (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

	%	Si	Fe	Cu	Mn	Mg	Cr	Zn Ti	Zn	Ti	_	Ot	her	Alu
	70			Cu	IVIII	1415		211	11		Each	Total	7 11 u	
Ī	Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-	
	Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance	

Applications

Processing Machinery, Electronic Engineering, Mechanical Engineering, Production Materials Handling, Construction Industry, Rail Guides, Equipment Manufacturing, Automation Assembly, Packaging Machinery, Transport And Conveyor.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

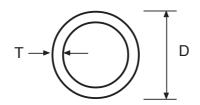
(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Modulus of elasticity MPa^(*) : Thermal conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat(0 to 100 °C)

J/kg °C : 940


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Height (H)	Width (W)	Length (L)
3 mm	1 "	1 "	16 ft
	1.1/4 "	1.1/4 "	16 ft
	1.1/2 "	1.1/2 "	16 ft
	2 "	2 "	16 ft
	3/4 "	1.1/2 "	16 ft
	1 "	2 "	16 ft
	1 "	3 "	16 ft
	1 "	4 "	16 ft
	1.1/2 "	3 "	16 ft
	2 "	4 "	16 ft

Thickness (T)	Height (H)	Width (W)	Length (L)
6 mm	1 "	2 "	16 ft
	1 "	3 "	16 ft
	1 "	4 "	16 ft
	1.1/2 "	3 "	16 ft
	2 "	3 "	16 ft
	2 "	4 "	16 ft
	2 "	5 "	16 ft

Aluminium Alloy Round Tube (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51		Cu	14111	1418		211			Each	Total	7114
Min	0.40	-	0.15	-	0.8	0.04	_	-	-	_	_	Balance
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	

Applications

Valve Seats, Seal Rings, Coupling, Camera Lens, Electrical-Connectors, Magnet Parts, Brake Pistons, Retaining Rings, Ball Valve Seats, Bearing Cages, Sockets, Clamp Rings, Bearings, Distributor Valves, High Heat Insulator, Lantern Rings **Typical Physical Properties**

Density g/cm³ : 2.70
Melting range °C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal conductivity

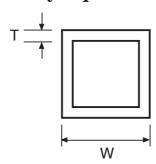
 $\begin{array}{ccccc} (0 \text{ to } 100 \text{ °C}) \text{ - W/m °C} & : & T6 \text{ Temper: } 167 \\ \text{Resistivity at } 20 \text{ °C} \text{ - } \mu\Omega \text{ cm} & : & T6 \text{ Temper: } 4.0 \end{array}$

Specific heat (0 to 100 °C)

J/kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Diameter (D)	Length (L)
3 mm	1/2 "	16 ft
	5/8 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
4.5 mm	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
6 mm	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft

Thickness (T)	Diameter (D)	Length (L)
6 mm	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	4.1/2 "	16 ft
	5 "	16 ft
	5.1/2 "	16 ft
	6 "	16 ft
3/8 "	2 "	16 ft
	2.1/2 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft
1/2 "	1.1/2 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	3.1/2 "	16 ft
	4 "	16 ft
	4.1/2 "	16 ft
	5 "	16 ft
	5.1/2 "	16 ft
	6.1/2 "	16 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Square Tube (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

	%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
	70			Cu	IVIII	1415		211	11		Each	Total	7 11 u
Ī	Min	0.40	-	0.15	-	0.8	0.04	-	-	-	-	-	-
	Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automation Assembly, Electrical Engineering, Packaging Machinery, Construction Industry, Mechanical Engineering, Precision Engineering, Material Handling, Bearing Cage, Hand Rail Tubing, Connectors, Distributor Valves.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.6 Modulus of elasticity $MPa^{(*)}$: 69 500

Thermal Conductivity

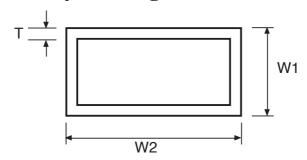
(0 to 100 °C) - W/m °C : T6 Temper: 167 Resistivity at 20° C - $\mu\Omega$ cm : T6 Temper: 4.0

Specific heat (0 to 100 °C)

J/Kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli


Thickness (T)	Width (W)	Length (L)
2 mm	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	2 "	16 ft
	3 "	16 ft
	4 "	16 ft
3 mm	1/2 "	16 ft
	3/4 "	16 ft
	1 "	16 ft
	1.1/4 "	16 ft
	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft

Thickness (T)	Width (W)	Length (L)
4.5 mm	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
6 mm	1.1/2 "	16 ft
	1.3/4 "	16 ft
	2 "	16 ft
	2.1/2 "	16 ft
	3 "	16 ft
	4 "	16 ft
	5 "	16 ft
	6 "	16 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Rectangular Tube (AA 6061 T6)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51	10	Cu	1411	1418		211	11		Each	Total	711u
Min	0.40	-	0.15	-	0.8	0.04	-	_	-	-	-	-
Max	0.8	0.7	0.40	0.15	1.2	0.35	0.25	0.15	-	0.05	0.15	Balance

Applications

Automation Assembly, Electrical Engineering, Packaging Machinery, Construction Industry, Mechanical Engineering, Precision Engineering, Material Handling, Bearing Cage, Hand Rail Tubing, Connectors, Distributor Valves.

Typical Physical Properties

Density g/cm 3 : 2.70 Melting range $^{\circ}$ C : 575 - 650

Coefficient of linear expansion

(0 to 100 °C) - °C⁻¹ x 10^6 : 23.6 Modulus of elasticity MPa^(*) : 69 500

Thermal Conductivity

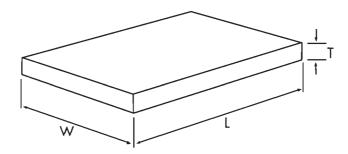
Specific heat (0 to 100 °C)

J/Kg °C : 940

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W1)	Width (W2)	Length (L)
2 mm	1/2 "	2 "	16 ft
	3/4 "	1.1/2 "	16 ft
	1 "	2 "	16 ft
	1.1/2 "	3 "	16 ft
	2 "	3 "	16 ft
	2 "	4 "	16 ft
3 mm	1 "	1.1/2 "	16 ft
	1 "	2 "	16 ft
	1 "	2.1/2 "	16 ft
	1 "	3 "	16 ft
	1 "	4 "	16 ft
	1.1/2 "	2 "	16 ft
	1.1/2 "	3 "	16 ft
	1.1/2 "	4 "	16 ft


(7)

Thickness (T)	Width (W1)	Width (W2)	Length (L)
3 mm	2 "	3 "	16 ft
	2 "	4 "	16 ft
	2 "	5 "	16 ft
	2 "	6 "	16 ft
	3 "	4 "	16 ft
	3 "	5 "	16 ft
	3 "	6 "	16 ft
4.5 mm	1.1/2 "	3 "	16 ft
	2 "	3 "	16 ft
	2 "	4 "	16 ft
	3 "	4 "	16 ft
(2 "	2 "	16.64
6 mm	2 "	3 "	16 ft
	2 "	4 "	16 ft

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Aluminium Alloy Sheet – Plate (AA 7075 T6/T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70			- Cu	1,111	1718		2311			Each	Total	7110
Min	-	_	1.2	-	2.1	0.18	5.1	-	Zr + Ti	-	-	-
Max	0.40	0.50	2.0	0.30	2.9	0.28	6.1	0.20	0.25	0.05	0.15	Balance

Applications

Aircraft Fittings, Gears and Shafts, Meter Shafts and Gears, Missile Parts, Military Equipment, Defense Industry, Machine Buildings, Precision Engineering, Structural Aircraft Parts. **Typical Physical Properties**

Density g/cm³ : 2.80 Melting range °C : 475 - 630

Coefficient of linear expansion

 $(0 \text{ to } 100 \text{ °C}) - \text{°C}^{-1} \times 10^6$: 23.5

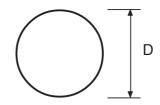
Modulus of elasticity MPa^(*) : 72 000

Thermal Conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 130 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 5.2

Specific heat (0 to 100 °C)

J/Kg °C : 915


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Thickness (T)	Width (W)	Length (L)
1/8 "	4 ft	8 ft
3/16 "	4 ft	8 ft
1/4 "	4 ft	8 ft
3/8 "	4 ft	8 ft
1/2 "	4 ft	8 ft
5/8 "	4 ft	8 ft
3/4 "	4 ft	8 ft
1 "	4 ft	8 ft
1.1/4 "	4 ft	8 ft
1.1/2 "	4 ft	8 ft
1.3/4 "	4 ft	8 ft
		I

Thickness (T)	Width (W)	Length (L)
2 "	4 ft	8 ft
2.1/2 "	4 ft	8 ft
3 "	4 ft	8 ft
3.1/2 "	4 ft	8 ft
4 "	4 ft	8 ft
5 "	4 ft	8 ft
5.1/2 "	4 ft	8 ft
6 "	4 ft	8 ft

Aluminium Alloy Round Rod (AA 7075 T6/ T651)

Chemical Composition

According to BS EN 573-1

%	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	_	Ot	her	Alu
70	51	10	- Cu		1115					Each	Total	7114
Min	-	-	1. 2	-	2.1	0.18	5.1	-	Zr + Ti	-	-	-
Max	0.40	0.50	2. 0	0.30	2.9	0.28	6.1	0.20	0.25	0.05	0.15	Balance

Applications

Aircraft Fittings, Gears and Shafts, Clock Parts, Rivets, Sockets, Hydraulics Valve, Computer Parts, Couplings, Missile Parts, Ammunitions Parts, Pistons, Equipment Components, Precision Engineering.

Typical Physical Properties

Density g/cm^3 : 2.80 Melting range ${}^{\circ}C$: 475 - 630

Coefficient of linear expansion

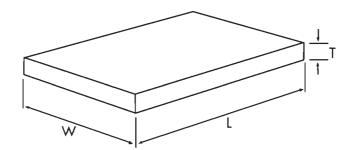
(0 to 100 °C) - °C⁻¹ x 10⁶ : 23.5 Modulus of elasticity MPa^(*) : 72 000

Thermal Conductivity

(0 to 100 °C) - W/m °C : T6 Temper: 130 Resistivity at 20 °C - $\mu\Omega$ cm : T6 Temper: 5.2

Specific heat (0 to 100 °C)

J/Kg °C : 915


 $1 \text{ MPa} = 1 \text{ N/mm}^2$

(*) Average of tension and compression moduli

Diameter (D)	Length (L)
1/8 "	16 ft
1/4 "	16 ft
3/8 "	16 ft
1/2 "	16 ft
5/8 "	16 ft
3/4 "	16 ft
7/8 "	16 ft
1 "	16 ft
1.1/4 "	16 ft

Diameter (D)	Length (L)
1.1/2 "	16 ft
1.3/4 "	16 ft
2 "	16 ft
2.1/2 "	16 ft
3 "	16 ft
3.1/2 "	16 ft
4 "	16 ft
5 "	16 ft
6 "	16 ft

Aluminium Alca Plus Cast Plate

Chemical Composition

%	Si	Fe C	Cu	Mn	Мσ	Mg	n Mo	Cr	Zn	Ni	_	Ot	her	Alu		
70	51		Cu	IVIII	1415					211					Each	Total
-	0.70	0.70	1.20	0.20	1.70	0.10	3.80	-	-	0.05	0.10	Balance				

Applications

Disk Drive Bases, Electronics, Machining Fixtures, Mounting Plate, Template, Compression Moulds, Injection Moulds, Packaging Components, Structural Base Plate.

Thickness (T)	Width (W)	Length (L)
1/4 "	4 ft	8 ft
5/16 "	4 ft	8 ft
3/8 "	4 ft	8 ft
1/2 "	4 ft	8 ft
5/8 "	4 ft	8 ft
3/4 "	4 ft	8 ft
7/8 "	4 ft	8 ft
1 "	4 ft	8 ft
1.1/4 "	4 ft	8 ft
1.1/2 "	4 ft	8 ft
1.3/4 "	4 ft	8 ft
2 "	4 ft	8 ft
2.1/4 "	4 ft	8 ft
2.1/2 "	4 ft	8 ft
3 "	4 ft	8 ft
3.1/2 "	4 ft	8 ft
4 "	4 ft	8 ft

Typical Physical Propertie	es ·	
	Minimum	Typical
	Design	• •
Tensile Strength*	19,000 psi	26,000 psi
Yield Strength*	11,000 psi	15,000 psi
Elongation in 2", %*		
0.250" to 1.000" Thickness, incl.	3	7
>1.000" to 2.000" Thickness, incl.	1.5	5
Brinell Hardness		65
Specific Gravity	2	.80
Density, lb/cu in.	0.	.101
Coefficient of Thermal Expansion	ı	
(Avg./°F) 68-212°F	13.1	x 10 ⁻⁶
(Avg./°F) 68-392°F	13.6	x 10 ⁻⁶
Thermal Conductivity		
Cal		
cm.s °C	0	.33
Electrical conductivity		
(68°F), % IACS		35
Modulus of Elasticity	10.3 x	k 10 ⁶ psi
		_
*Mechanical properties obtained usi	ng test bars ci	ut from plate;
not separately cast test bars		

126 Genting Lane, Singapore 349576

Superfix (Singapore) Pte Ltd

Machining Guidelines of Aluminium

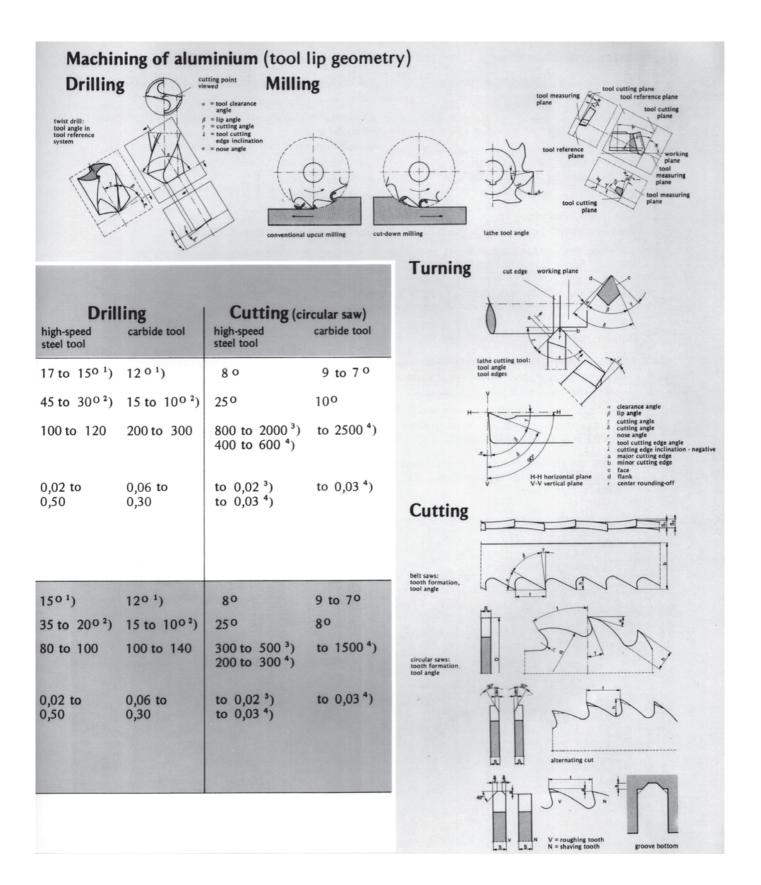
APPLICATIONS OF ALUMINIUM PLATE for Tools, Moulds, Jigs and Fixtures in the Machine Industry

II. Processing

a) machining	
b) joining	Welding, riveting, screwing work, etc. (see respective aluminium codes of practice and ,,Metalworking with Aluminium")
c) forming	Bending and selected deformation by compression are possible to a restricted degree but are rarely utilized for the above applications.

Standard Values

for turning, milling, drilling and cutting of aluminium


Alloys	Cutting	Machining method, cutting tools and surface quality								
		Turning high-speed steel tool carbide tool				Milling high-speed steel tool carbide tool				
		∇	\text{\tin}}}}}}} \end{ensighter}}}}}}}}}}}} \endrespect\tamp\end{ensighter}}}}	∇	∇	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∇∇	∇ ∇	∇∇	
non-heat- treatable	clearance angle	10 to	70	12 to 10	90	12 to	80	12 to	80	
and heat treatable	cutting angle	45 to	35°	35 to 20)0	30 to 2	30 to 25°		25 to 20°	
alloys in soft temper	cutting speed in m/min.	200 to 450	400 to 1000	600 to 1200	to 2400	300 to 600	to 1200	to 2500	to 3000	
	advance feed in mm/rev. or mm/tooth	to 1	0,1 to 0,3	0,3 to 0,6	to 0,15	0,1 to 0,5	0,03 to 0,1	0,1 to 0,6	0,03 to 0,1	
	depth of cut	to 6	to 1	to 6	to 0,5	to 6	to 0,5	to 7	to 0,5	
	in mm angle of twist						30 - 400			
strain-	clearance angle	10 to	70	10 to 8	30	10 to	50	10 to	60	
hardened and heat-	cutting angle	40 to 3	00	24 to 10)0	25 to 20	00	20 to 1	50	
treated wrought alloy materials	cutting speed in m/min.	100 to 200	200 to 500	150 to 400	250 to 700	150 to 300	250 to 800	300 to 800	500 to 1000	
	advance feed in mm/rev. or mm/tooth	0,2 to 0,5	0,05 to 0,25	0,3 to 0,6	0,05 to 0,1	0,1 to 0,5	0,03 to 0,1	0,1 to 0,6	0,03 to 0,1	
	depth of cut in mm angle of twist	to 5	to 0,5	to 5	to 0,5	to 6	to 0,5 to 30°	to 7	to 0,5	

¹⁾ relief grinding angle 2) angle of twist 3) tooth pitch - medium 4) tooth pitch - coarse ∇ roughing $\nabla\nabla$ smoothing or superfinish tooling For reference values for high-speed processing see also aluminium code of practice "B 2".

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Machining Guidelines of Aluminium

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Sales Agreement

1. Agreement for sale

The Seller agrees to sell and the Buyer agrees to buy the Goods at the total purchase price stated in the Purchase Order accepted by the Seller and on the terms and conditions set out in the Purchase Order, and the terms and conditions herein which form part of this agreement. Property in, and risk of loss or damage to, the Goods shall pass to the Buyer as soon as the Seller accepts the Buyer's Purchase Order.

2. Payment

The Buyer will pay the Initial Payment (if any) to the Seller on or before the signing of this agreement, and will pay the balance of the total purchase price to the Seller at the address stated (or at such other address as the Seller may specify in writing to the Buyer at the expiry of 30 days from the date of delivery of the goods / acceptance of the Purchase Order by the Seller. Payments by post shall be at the risk of the Buyer.

3. Seller's remedies

The Buyer acknowledges that punctual payment of the balance of the total purchase price is of the essence of this agreement, and that, if the Credit Limit is exceeded and / or if, the Initial Payment or the balance of the total purchase price or any part thereof remains unpaid for more than 7 days after becoming due, the Buyer will be deemed to have repudiated this agreement and:

- 3.1 the full remaining balance of the total purchase price shall immediately become due and payable with interest rate which is 2% above the average prime rate of The Development Bank of Singapore Limited from time to time in force, such interest to accrue from day to day and to run after as well as before any judgement; and
- 3.2 the Seller shall have the option to resell the Goods and on such resale:
- 3.2.1 this agreement shall be withdrawn, clause 3.1 shall cease to have effect and the Buyer will cease to have any property or interest in the Goods, but notwithstanding such withdrawal, the Seller will be entitled to retain all payments made by the Buyer under this agreement and to recover from the Buyer the amount of any deficiency in the total purchase price shown after resale together with interest and costs as provided below;
- 3.2.2 the Buyer will at the Buyer's own expense deliver up possession of the Goods to the purchaser at such address within Singapore as the purchaser may require, and on default the Buyer will indemnify the Seller against all loss and expense sustained by the Seller as a result of such default including, but not limited to the amount of any liability the Seller may insure to the purchaser by reason of the Buyer's default; and
- 3.2.3 except for the payment of any surplus payable to the Buyer pursuant to clause 4 below, all liabilities of the Seller to the Buyer shall be extinguished and the Buyer will have no rights or claims against the Seller of any kind whatsoever under or arising out of this agreement.

4. Proceeds of resale

The proceeds of any resale under clause 3.2 above shall, after deducting the costs and expenses of insurance (if any), storage, transport and resale, be applied in paying to the Seller the unpaid balance of the total purchase price and interest payable under this agreement with all costs incurred by the Seller (including legal costs on a full indemnity basis) in taking steps to enforce payment by the Buyer or to locate and resell the Goods. If such proceeds of sale are insufficient for that purpose, the Buyer will pay to the Seller on demand the amount of the deficiency. If such proceeds of sale exceed the amount to be paid to or retained by the Seller under this clause, the excess shall be paid to the Buyer, but the Seller will be entitled to retain and set off against what would otherwise be due to the Buyer under this clause such sum as in the sole opinion of the Seller necessary to provide the Seller with the Indemnities due to the Seller from the Buyer under this agreement.

5. Insurance

The Buyer will keep the Goods insured in their full replacement value and with Insurers to be approved by the Seller against loss or damage by fire and such other risks (including third party risks) as are usually covered by insurance in the type of business for which the Goods are for the time being used and such further risks as the Seller reasonably requires in making good the damage; or if the Goods are damaged beyond repair in replacing the Goods by other similar Goods to which the terms of this agreement shall apply.

Sales Agreement (con't)

6. Indemnity against third party claims

As an obligation surviving termination of this agreement, the Buyer will indemnify the Seller in respect of any claims made against the Seller and all damages, costs and expenses suffered or incurred by the Seller as a result of a claim made by a third party arising out of the state, condition or use of the Goods, or in any way arising out of the Goods being sold under this agreement.

7. Condition of Goods

It is now mutually agreed that:

- 7.1 The Buyer declares that he has examined the Goods and that they are in every respect satisfactory;
- 7.2 The Seller does not sell the Goods subject to any condition or warranty, express or implied, save those implied by the provisions of the Sale of Goods Act (Cap 393) Section 12 (relating to the title of the Seller to the Goods), so that (without prejudice to the generality of the foregoing) there is excluded:
- 7.2.1 any condition of fitness of the Goods for any particular purpose;
- 7.2.2 in cases where the Goods are sold by reference to a description, any condition that the Goods will correspond with the description; or
- 7.2.3 where the Goods are sold by reference to a sample, any condition that the bulk will correspond with the sample in quality, that the Buyer will have a reasonable opportunity of comparing the bulk with the sample, and that the Goods will be free from any defect rendering them unmerchantable which would not be apparent on reasonable examination of the sample; and
- 7.2.4 any condition of merchantable quality in respect of the Goods.

8. Notices

Any notice or demand served under this agreement shall be sufficiently served if sent by prepaid letter post or telex to the usual or last known place of business of the addressee, and proof of dispatch shall be conclusive evidence of receipt by the addressee in due course of transmission.

9. Disclosure

The Seller may disclose details of and relating to the transaction evidenced by this agreement to any credit reference agency or any other party at the Seller's discretion, and the Seller may refuse to enter into this agreement without stating a reason.

10. Interpretation and miscellaneous

- 10.1 The clause headings do not form part of this agreement and shall not be taken into account in its construction or interpretation.
- 10.2 Words importing one gender include all other genders and words importing the singular include the plural and vice versa.
- 10.3 References to the Seller shall where the context so admits include the Seller's successors in the tile and references to the Goods include all replacements and renewals of the Goods and all accessories and additions to the Goods.
- 10.4 The rights conferred on the Seller under this agreement shall be in addition to, and not in substitution for, any rights conferred on the Seller by the Sale of Goods Act (Cap 393) or at common law.
- 10.5 This agreement contains all the terms agreed between the Seller and the Buyer. The Buyer has not relied upon any representation or warranty by the Seller except as expressly stated or referred to in this agreement. No variation of this agreement shall be effective unless it be in writing and signed by or on behalf of the Seller and the Buyer. The rights of the Seller under this agreement shall not in any way be affected by any time or other indulgence granted by the Seller.
- 10.6 Any reference in this agreement to a statutory provision shall be construed as a reference to that provision as from time to time amended or reenacted.

Superfix is keen to establish a worldwide network of distributors and business partners. We look forward to technical discussions on Aluminium Alloys, sharing of knowledge and expertise, and building up multi-party, beneficial business relationships in an era where society and the world becomes a global village. We are adaptable to changes and embrace Information Technology as a necessary step towards excellence in customer service.

Share our vision. Join us as a business partner. Together, we can be more competitive and reach out more effectively to our customers to serve them better.

Superfix (Singapore) Pte Ltd

126 Genting Lane. Singapore 349576. Tel: (65) 6748 2122 Fax: (65) 6747 9838

Email: sales@superfix.com.sg Website: www.superfix.com.sg

Authorised Distributor	