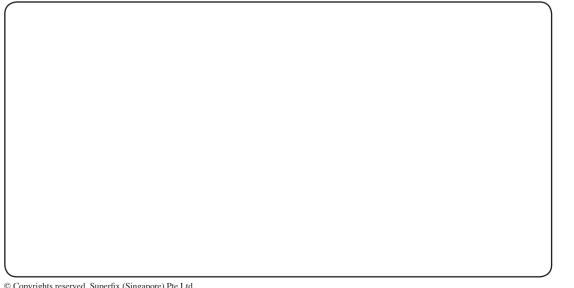
SUPERFIX[®]

SUPERFIX®


Superfix is keen to establish a worldwide network of distributors and business partners. We look forward to technical discussions on Engineering Plastics, sharing of knowledge and expertise, and building up multi-party, beneficial business relationships in an era where society and the world becomes a global village. We are adaptable to changes and embrace Information Technology as a necessary step towards excellence in customer service.

Share our vision. Join us as a business partner. Together, we can be more competitive and reach out more effectively to our customers to serve them better.

Superfix (Singapore) Pte Ltd 126 Genting Lane. Singapore 349576. Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Authorised Distributor

© Copyrights reserved. Superfix (Singapore) Pte Ltd.

Engineering Plasticc

SUPERFIX®

Introduction

SUPERFIX®

- A Leader in Customer Service
- Products Of Consistent Quality
- Continuous Research & Development
- Competitive Pricing

Superfix offers a wide range of semi-finished products made from more than 100 different plastics. These consist of rods, plates, heavy-walled and thin-walled tubes, and sections in stock.

We distribute our semi-finished plastics from Singapore to around the globe for commerce with various industries. We are able to help you get any facts and figures you need on non-standard materials. Our professional sales team places customer satisfaction as a top priority, attending to your various needs.

Key features of the system we implemented are the advisory service provided by our engineers, and a customer oriented logistics concept.

We specialise in the fabrication of Semi-Finished Plastic, and offer a complete range of service to our customers, from basic to complex fabrication. There are no restrictions on the minimum quantity ordered. We have produced quantities from one or two pieces up to one million pieces.

If your product requires a secondary operation such as drilling, tapping or punching, we have the equipment and knowledge to perform the work. For the more demanding machining work requiring close-tolerance, our CNC machines centre provides us with both accuracy and flexibility. Our in-house coordinates measuring machine enables us to inspect the material to our customers' specifications.

The fabrication services listed above are only a brief overview of our capabilities. Send us your blue prints and specifications for a prompt quote without obligation.

For any enquiries, email us or contact us.

Descriptions		Page
Mission Statement		1
Company Profile		1
Important Note		2
Industry Applications		3-4
Semi-Conductor Industry		5-6
ESD Static Control Guides		7
Engineering Plastics	Static Control	
ABS		8
Acetal		9
Acetron®		10
Acrylic		11
Acrylic AC-300™ / AC-350™	Static Control	12
Celazole® PBI		13
Celtec®		14
Corzan [®] CPVC		15
Delrin®		16
Delrin [®] AF Blend		17
Duratron® XP (CM)		18
Duratron [®] 150 PI (CM)		19
Ertalyte [®] PET-P		20
Ertalyte [®] TX		21
Flametec™ CP7-D		22
Flametec™ CPVC		23
Flametec™ Cleanroom PVC-C		24
Flametec [™] Halar [®] ECTFE		25
Flametec™ Kytec [®] PVDF		26
Fluorosint [®] 207 (CM)		27
Fluorosint [®] 500 (CM)		28
Glass-Based Laminates G-5, G-7, G-9	9, G-10, G-11	29
Kel-F [®] PCTFE		30
Ketron [®] PEEK 1000 (EX)		31
Ketron [®] PEEK (CM)		32
Ketron [®] PEEK 30% GF (EX)		33

Descriptions		Page
Ketron [®] PEEK 30% GF (CM)		34
Ketron [®] PEEK 30% CF (EX)		35
Ketron [®] PEEK 30% CF (CM)		36
Ketron® PEEK-HPV		37
Kynar [®] PVDF		38
Kynar [®] PVDF CN-F & CN-P	Static Control	39
Lexan [®] Polycarbonate (Ex)		40
Lexan [®] 104 Polycarbonate (Ex)	Static Control	41
Lexan® 9034 Sheet		42
Lexan® XL10 Sheet		43
Lexan Thermoclear® Sheet LTC 2R10		44
Macor® Glass Ceramic		45
MC Nylon 501CD R2/R6	Static Control	46
Meldin [®] 2001, 2021, 2030, 2211		47
Meldin [®] 7001, 7021		48
Noryl®		49
Nylon Cast (Polyamide)		50
Nylon 6 Extruded (Polyamide 6)		51
Nylon Extruded (Polyamide)		52
PEEK		53
Phenolics Laminate (Paper, Canvas, Linen)		54
Polycarbonate		55
Polycarbonate PC-300/PC-500	Static Control	56
Polyethylene 300		57
Polyethylene 500		58
Polyethylene 1000		59
Polyethylene 300 EL	Static Control	60
Polyethylene 1000 Anti-Static	Static Control	61
Polyproplene		62
Polyslick 100/300		63
Polyslick 501/502	Static Control	64
Polyurethane		65
POM-AS	Static Control	66

Descriptions		Page
POM-ESD	Static Control	67
PVC & CPVC		68
PVC 300 [™] /350 [™] Anti-Statics	Static Control	69
Radel [®] A		7(
Radel [®] R		7
Rulon [®] Filled PTFE		72
Ryton [®] PPS		73
Semitron [®] ESd 225 (EX) Acetal	Static Control	74
Semitron [®] ESd 410C (CM) Polyetherimide	Static Control	7
Semitron [®] ESd 420 (CM) Polyetherimide	Static Control	7
Semitron® ESd 520HR (CM) Polyamide-imide	Static Control	7
Semitron [®] ESd 500HR (CM)	Static Control	78
Sintimid 8000		79
Sintimid PAI ESd	Static Control	8
Sintimid PUR HT		8
Sintimid PVX		8
Solder Pallet Materials	Static Control	8
Tecadur [®] PET		84
Tecafine PP ELS	Static Control	8
Tecaform™ Acetal (Copolymer)		8
Tecaform AD Acetal (Homopolymer)		8
Tecaform AD AF		8
Tecaform AH ELS	Static Control	8
Tecaform AH GF 25		9
Tecaform HPV 13		9
Tecaform SD	Static Control	92
Tecaflon PVDF		9:
Tecaflon PVDF CF 8	Static Control	94
Tecamax SRP sw		9
Tecamid [®] Nylon		9
Tecamid MDS®		9
Tecamid 66 CF 20	Static Control	9
Tecamid 6/6 GF 30		9

Descriptions		Page
Tecanat Polycarbonate		10
Tecanat ESd 7	Static Control	10
Tecanat GF 30		10
Tecanyl (PPO)		10
Tecanyl GF 30		10
Tecapeek™		10
Tecapeek CF 30	Static Control	10
Tecapeek ELS	Static Control	10
Tecapeek HT		10
Tecapeek MT		10
Tecapei ESd 7	Static Control	11
Tacaran ABS		11
Tecason P		11
Tecason S		11
Tecast T		11
Tecast TM		11
Tecast Vekton		11
Tecator™ PAI		11
Tecatron [®] PPS		11
Tecatron GF 40 SW		11
Tecatron MT SW		12
Tecatron PVX		12
Techtron [®] PPS (EX)		12
Techtron [®] PPS (CM)		12
Techtron [®] HPV		12
Teflon [®] PTFE		12
Tivar® 1000 Anti-Static	Static Control	12
Tivar [®] Clean Stat™ UHMW	Static Control	12
Torlon [®] 4203 PAI (EX)		12
Torlon [®] 4301 PAI (EX)		12
Torlon [®] 4501 PAI (CM)		13
Torlon [®] 4503 PAI (CM)		13
Torlon [®] 4540 PAI (CM)		13

Descriptions	Page
Torlon [®] 5530 PAI (CM)	133
Turcite [®] TA & TX	134
Udel [®] Polysulfone (EX)	135
Ultem®	136
Ultem [®] 1000 PEI	137
Ultem [®] 2300 PEI	138
Vespel [®] SP-1, SP-21, SP-22, SSP-211, SP-3	139
Vintec [®] I PVC	140
Vintec [®] II PVC	141
Machining Guidelines – Sawing, Drilling, Milling etc	142-144
Chemical Resistance – Chemical Agents	145-150
Sales Agreement	151-152

1. Mission Statement

A leader in customer service, with technical competence to ensure compliance to international standards of safety and quality, continuous research and development, and providing products of consistent quality at competitive prices.

2. Company Profile

Superfix was incorporated in 1987 to provide a wide range of semi-finished products made from more than 100 different Engineering plastics consist of rods, plates, heavy-walled and thin-walled tubes, films and sections in stock.

Our focus is on providing a total solution, offering sales and services to a diverse base of customers in the electrical and electronic, automation & assembly, semi-conductor and disk drive industries.

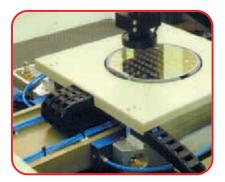
Superfix name has become synonymous with engineered plastics materials that provide excellent properties for dielectric strength, thermal conductivity, surface resistivity, service temperature, chemical resistance, anti-static, static-dissipative, conductive materials to a vast array of sectors.

Over the years, with our commitment to total quality excellence, we were able to build up a team of dedicated professionals with a wide spectrum of expertise. It was through their collective efforts, together with the support of valued clients and business partners, that we established our presence in the local industry, as well as the international arena.

Superfix is keen to establish a worldwide network of distributors and business partners. We look forward to technical discussions, sharing of knowledge and expertise, and building up multi-party, beneficial business relationships in an era where society and the world becomes a global village. We are adaptable to changes and embrace Information Technology as a necessary step towards excellence in customer service.

Share our vision. Join us as a business partner. Together, we can be more competitive and reach out more effectively to our customers to serve them better.

3. Important Note


3.1 Disclaimer

- 3.1.1 Superfix (Singapore) Pte Ltd ("Superfix") does not warrant that the use of this user manual together with the information and data (Product Catalogue & Technical Handbook) or any part thereof by you shall not infringe the rights of any third party, including without limitation the infringement of any trademark, copyright, design right, patent, trade secret or other intellectual property rights of any third party and all warranties in respect of the Product Catalogue & Technical Handbook are excluded to the fullest extent permitted by law.
- 3.1.2 Whilst Superfix has endeavoured to develop the Product Catalogue & Technical Handbook and to derive the information and data contained therein from tests conducted in conformance with industry standards, Superfix does not warrant that the Product Catalogue & Technical Handbook is error free. Superfix further does not warrant the sufficiency, accuracy or quality of the Product Catalogue & Technical Handbook and the results you may or may not obtain in your use of the Product Catalogue & Technical Handbook.
- 3.1.3 You assume all risks and liabilities of using and relying on the Product Catalogue & Technical Handbook, its functions, information and data contained therein.
- 3.1.4 THIS PRODUCT CATALOGUE & TECHNICAL HANDBOOK IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED. THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY, THERE ARE NO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 3.1.5 SUPERFIX SHALL NOT BE LIABLE IN ANY EVENT FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR INDIRECT DAMAGES (INCLUDING WITHOUT LIMITATION LOSS OF REVENUE, PROFITS, OPERATIONAL TIME, USE OF EQUIPMENT OR DATA) AND WHETHER ASSERTED IN CONTRACT, TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY) OR OTHERWISE, AND IRRESPECTIVE OF WHETHER SUPERFIX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
- 3.1.6 ANY LIABILITY TO YOU OR TO ANY THIRD PARTY BY SUPERFIX SHALL BE LIMITED EXCLUSIVELY TO REPLACING THE PRODUCT CATALOGUE & TECHNICAL HANDBOOK ONLY.

3.2 Updates

- 3.2.1 Superfix may from time to time update or revise the Product Catalogue & Technical Handbook and is under no obligation to conduct such revisions or updates on a timely basis or whenever any significant error or omission is detected or to furnish such revisions or updates to you.
- 3.2.2 The informations contained in this product catalogue, a Technical Handbook are given for guidance only. They impose no liability on Superfix and do not constitute contractual undertakings Guidance given here for the selection of the most appropriate material for an intended use must be checked by the user to take account of his own manufacturing conditions. The user must take all necessary steps to ensure that the materials selected are suitable for the intended application.

4. Industry Applications

Semi-Conductor

- Wafer Clamping Rings (Plasma Etching)
- Support Comb
- Chip Test Equipment
- Wafer Etching (Chemical)
- Wafer Handling Systems
- Wafer Carriers

Electronic

- Holders for Test Contact Pins
- Bearings, Bushings, Seals
- Insulators
- Retains & Clamps Rings
- Chip Nests and Sockets
- Electrical Connectors

Automation & Assembly

- Conveyor Guides
- Bearings & Bushings
- Protective Linings
- Chain guides
- Cam Roller
- Wear Pads & Strip

Medical

- Physiologically safe in direct contact with the human body, wounds and body fluids
- Bio compatible
- Very good chemical resistance to body fluids and disinfectants
- Resistant to hydrolysis when treated with hot water and steam
- Resistant to high energy radiation such as gamma and X-rays
- No effect on magnetic reasonance or X-ray equipment
- Conform to American Food and Drug Administration ((FDA) and equivalent European standards

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

4. Industry Applications

Material Handling

- Protective Linings
- Bushings And Bearings
- Chain Guides
- Guide Rails
- Gear & Wheel
- Conveyor Guides

Mechanical Engineering

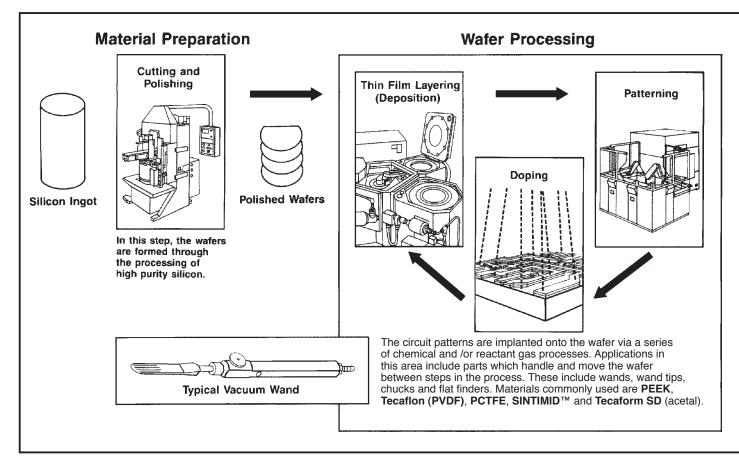
- Wear Pads & Strips
- Rollers & Wheels
- Bearings & Bushings
- Sprockets And Sheaves
- Conveyor Guides

Chemical

- Plating Barrels & Tanks
- Pump Components & Housings
- Chemical Resistant Tanks & Linings
- Scrubbers
- Sinks & Ducts
- Seals & Guides

Food Processing

- Physiologically Safe
- Food Packaging Equipment
- Excellent Resistancy to Friction
- Resistant to Acids and Alkalies
- Does not Dull Knifes
- Complaints to FDA / 3A Diary


ESD Materials (Static Control)

Materials for ElectroStatic Discharge (ESD) can be categorized into three distinct groups – separated by their ranges of conductivity to electrical charges.

Anti-Static:		10 ¹⁸	
Resistivity generally between 10 ⁹ and		1017	Insulating
10^{12} ohms per square.		1016	Materials
Initial electostatic charges are		1015	Waterials
suppressed. May be surface resistivity, surface-		1014	
coated or filled throughout.		1013	
		1012	Anti Statia
	b	1011	Anti-Static
Static Dissipative (SD):		10 ¹⁰	
Resistivity generally between 10 ⁶ and	Surface Resistivity (Ohms / sq	10 ⁹	
10^9 ohms per square.	Oh	10 ⁸	
Low or no initial charges - prevents			Static Dissipative
discharge to from human contact.	ivit	107	Static Dissipative
May be either surface-coated or filled throughout.	sist	10 ⁶	
unoughout.	Ree	105	
	[eo	104	Conductive Range
Conductive (CN):	rfa	10 ³	Composites
Resistivity generally between 10 ³ and	Su	10 ²	Materials
10 ⁶ ohms per square.		10 ¹	Waterials
No initial charges, provides path for		10^{0}	
charge to bleed off.		10-1	Conductive carbon
Usually carbon-particle or carbon-		10-2	Carbon Fibres
fiber filled throughout.		10-3	
		10-4	Matala
			Metals
		10-5	

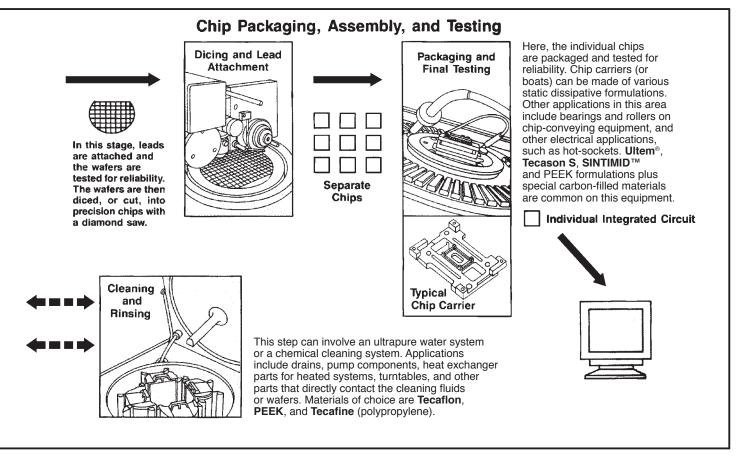
Superfix (Singapore) Pte Ltd

Where Ensinger materials are used in the processing of semiconductors...

Ensinger engineering plastics used in the semiconductor processing industry provide...

• *Chemical Resistance.* Ensinger offers a wide range of chemically resistant materials such as **PEEK**, **Tecafion (PVDF)**, **Tecafron (PPS)**, **Tecason S (PSU)**, **Tecaform SD** (copolymer and homopolymer acetal), **Tecadur (PET)**, **Tecafine** (polypropylene), **PCTFE**, and **SINTIMID**[™].

• *High Purity.* Tecaflon, PEEK, and SINTIMID contain a negligible amount of ionic impurities and therefore can be used in ultrapure water system.


• *Elimination of Particle Contamination.* Any measurable particle contamination is detrimental to the processing of integrated circuits. **Tecaflon**, **PEEK**, **PCTFE**, and **SINTIMID** operate under these stringent conditions and do not particulate, maintaining the integrity of the chips.

• *Static Dissipation.* Ensinger has available engineering plastics that are a blend of base resins with proprietary additives providing static dissipative properties that do not lessen with surface wear or friction. They include **Tecaform SD**, a static dissipative acetal, **Tecafine SD**, a permanently antistatic polyproplylene, and **Tecaran SD**, an anti-static ABS.

Ensinger can customize formulations to meet specific needs. Fillers such as carbon, glass, and Teflon[®] are routinely added to increase strength, enhance bearing properties, or reduce resistivity. Common base materials such as **PEEK**, **Ultem**[®], and **SINTIMID** can be tailored to meet demanding applications.

Typical components made from Ensinger materials are drains, wafer chucks clamps turnables, carriers, rollers, bearings, wands, tips, flat finders, wand holders, baffles, support plates, sleeves, and pump parts.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Materials	Characteristics
Tecaflon (PVDF)	Is a high-purity, non-particulating fluorinated engineered plastic. It posssses excellent chemical resistance and can be used up to 285°F continuously.
PEEK	Has excellent mechancial properties, wear, abrasion, and hydrolysis resistance. It can be used continuously up to 482°F. PEEK has high purity, and is resistant to micro-organism growth.
Ultem®	Possesses excellent electrical and mechanical properties. It can be used continuously up to 338°F. Ultem is resistant to most acids and bases, steam, gamma, and UV radiation.
Tecason S (PSU)	Is a transparent engineering plastic resistant to steam, acids, bases. It can be used at temperatures up to 285°F. Tecason S has good mechanical and electrical properties.
Tecaform SD (Acetal)	Is a copolymer and homopolymer that offers good mechanical strength, wear and chemical resistance. It is also available as static dissipative with surface resistivity of 10 ⁹ to 10 ¹¹ .
SINTIMID™	Is a family of high temperature polyimides and polyamide-imides with superior bearing and wear, mechanical and electrical properties. Specific grades provide high purity and low outgassing.
PCTFE	Is a homopolymer of chlorotrifluoroethylene that is unique balance of mechanical, chemical, and electrical properties. PCTFE is extremely versatile and has excellent stability.
Tecatron (PPS)	Resists all known solvents at temperatures up to 392°F. It has good mechancial and electrical properties, as well as high purity.
Tecafine (PP)	Possesses good chemical resistance and high purity. It is lightweight, weldable, and unaffected by moisture. Tecafine is also available as static dissipative.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

ABS (Acrylonitrile-Butadiene-Styrene)

CHARACTERISTICS:	ABS	ASTM or	Typical
• Easily machined to close tolerances	General Properties	UL Test	Values
Readily electroplated		021000	,
Selective etching process	PHYSICAL		
APPLICATIONS:	Special Gravity (g/cm ³)	D792	1.04
Cassette holders	Water Abosorption, 24 hrs (%)	D570	-
Business machine housings	MECHANICAL		
TraysModel building	Tensile Strength (psi)	D638	6,500
e	Tensile Modulus (psi)	D638	340,000
Laboratory equipment	Tensile Elongation at Break (%)	D638	25
NATEDIAL ANAL ADIL 1977.	Felxural Strength (psi)	D790	11,000
MATERIAL AVAILABILITY:	Felxural Modulus (psi)	D790	320,000
Rods: 0.25" to 6"	Compressive Strength (psi)	D695	_
Sheet: 0.60" to 4"	Compressive Modulus (psi)	D695	_
	Hardness Rockwell	D785	R105
GRADES/COLOURS:	Izod Notched Impact (ft-Ib.in)	D256	7.0
ABS: Ivory			
	THERMAL		
	Coeff. of Linear Thermal Expansion		
	(x 10 ⁻⁵ in./in./°F)	D696	5.3
	Heat Deflection Temp (°F/°C) at 264 psi	D648	215 / 102
	Melting Temp (°F/°C)	D3418	_/_
	Max Operating Temp (°F/°C)	_	140 / 60
	Thermal Conductivity		
	(BTU-in/ft ² /-hr-°F)	C177	-
	$(x \ 10^{-4} \ cal/cm-sec^{\circ}C)$	C177	-
	Flammability Rating	UL94	HB
	ELECTRICAL		
	Dielectric Strength (V/mil) short time, 1/8" thick	D149	-
	Dielectric Constant at 60 Hz	D150	_
	Dielectric Factor at 60 Hz	D150	-
	Volume Resistivity (ohm-cm) at 50% RH	D257	1016

Acetal (PolyOxy-Methylene)

CHARACTERISTICS:

- Good dimensional stability
- Low moisture absorption
- Excellent machinability
- High fatigue endurance
- Superior impact and creep resistance
- Chemical resistance to fuels and solvents
- Natural grade is FDA, NSF and USDA compliant

APPLICATIONS:

- Valve components
- Gears, bearings, bushings, rollers, fittings
- Electrical insulator parts
- Electronic component

MATERIAL AVAILABILITY:

Rods: 1/8" to 10" Sheet: 0.031" to 4" Film: 0.002" to 0.029"

GRADES/COLOURS:

Acetal Copolymer:	White (Natural)/
	Black
Delrin Homopolymer:	White (Natural)/
	Black
Delrin AF PTFE Filled:	Dark Brown

Acetal General Properties	ASTM or UL Test	Acetal Copolymer	Delrin [®] Homopolymer	Delrin [®] AF PTFE - filled
PHYSICAL				
Special Gravity (g/cm ³)	D792	1.41	1.41	1.50
Water Abosorption, 24 hrs (%)	D570	0.2	0.2	0.2
MECHANICAL				
Tensile Strength (psi)	D638	9,500	11,000	8,000
Tensile Modulus (psi)	D638	400,000	450,000	435,000
Tensile Elongation at Break (%)	D638	30	30	15
Felxural Strength (psi)	D790	12,000	13,000	12,000
Felxural Modulus (psi)	D790	400,000	450,000	435,000
Compressive Strength (psi)	D695	15,000	16,000	16,000
Compressive Modulus (psi)	D695	400,000	450,000	350,000
Hardness Rockwell	D785	M88/R120	M89/R122	M85/R115
Izod Notched Impact (ft-Ib.in)	D256	1.0	1.0	0.7
THERMAL				
Coeff. of Linear Thermal Expansion				
(x 10 ⁻⁵ in./in./°F)	D696	5.40	4.70	5.00
Heat Deflection Temp (°F/°C) at 264 psi	D648	220 / 104	250 / 121	244 / 118
Melting Temp (°F/°C)	D3418	335 / 168	347 / 175	347 / 175
Max Operating Temp (°F/°C)	-	180 / 82	180 / 82	180 / 82
Thermal Conductivity				
(BTU-in/ft ² /-hr-°F)	C177	1.6	2.5	_
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$	C177	5.5	8.6	_
Flammability Rating	UL94	HB	HB	HB
ELECTRICAL				
Dielectric Strength (V/mil) short time, 1/8" thick	D149	420	450	400
Dielectric Constant at 1 MHz	D150	3.8	3.7	3.1
Dielectric Factor at 1 MHz	D150	0.005	0.005	0.010
Volume Resistivity (ohm-cm) at 50% RH	D257	10 ¹⁵	10 ¹⁵	3.0×10^{16}

DELRIN[®] is the registered trademark of Dupont

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Acetron®

(GP Acetal, Unfilled Porosity-free copolymer acetal, extruded)

CHARACTERISTICS:	Acetron	ASTM or	Typical
 Good dimensional stability 	General Properties	UL Test	Values
 Low moisture absorption 			, unues
 Excellent machinability 	PHYSICAL		
High fatigue endurance	Special Gravity (g/cm ³)	D792	1.41
 Superior impact and creep resistance 	Water Abosorption, 24 hrs (%)	D792 D570	0.2
Chemical resistance to fuels and	water Abosorption, 24 ms (70)	0570	0.2
solvents	MECHANICAL		
 Natural grade is FDA, NSF and 		D638	9,500
USDA compliant	Tensile Strength (psi)	D638	400,000
	Tensile Modulus (psi)	D638	400,000 30
APPLICATIONS:	Tensile Elongation at Break (%) Felxural Strength (psi)	D038 D790	30 12,000
Valve components	Felxural Modulus (psi)	D790	400,000
• Gears, bearings, bushings, rollers,	Shear Strength (psi)	D790 D732	8,000
fittings	Compressive Strength (psi)	D732 D695, 10% def.	15,000
 Electrical insulator parts 	Compressive Modulus (psi)	D093, 10% del. D695	400,000
 Electronic component 	Hardness, Rockwell M	D095	88
	Hardness, Rockwell R	D785	120
MATERIAL AVAILABILITY:	Hardnesss, Nockwell K Hardnessss, Durometer, Shore D Scale	D785 D2240	85
Rods: 1/8" to 10"	Izod Impact (Notched), ft-lb/in	D2240 D256	1
Sheet: 0.031" to 4"	Coefficient of Friction, Dynamic	Dry vs. Steel	1
Film: 0.002" to 0.029"	Coefficient of Priction, Dynamic	PTM55007	0.25
	Limiting PV, psi-fpm	PTM55007	2,700
GRADES/COLOURS:	k (wear) factorr, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	2,700
Acetron [®] : White (Natural) /Black	k (wear) factori, for in -init/to-it-in	1 110155007	200
	THERMAL		
	Coeff. of Thermal Expansion		
	(10E-4/°F)	E831 (TMA)	0.54
	Deflection Temp (°F/°C) at 264 psi	D648	220
	Melting Point (Crystalline) Peak, °F	D048 D3418	335
	Continuous Service in Air (Max), °F	Without Load	180
	Thermal Conductivity (BTU-in/hr-ft ² -°F)	Williout Load	1.66
			1.00
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	420
	Surface Resistance, ohm/sq	EOS/ESD S11.11	1E+15
	Dielectric Constant, 1 MHz	D150(2)	3.8
	Dissipation Factor, 1 MHz	D150(2)	0.005
		D130(2)	0.005

Acetron[®] is the registered trademark of Quadrant Engineering Plastics Products

Acrylic (Polymethyl-Methacrylate)

CHARACTERISTICS:Easily sawed,drilled milled, engravedReadily sanded and polished	Acrylic General Properties	ASTM or UL Test	Typical Values
Readily bend or themoformed at low temperatureWide variety of colours	PHYSICAL Special Gravity (g/cm ³) Water Abosorption, 24 hrs (%)	D792 D570	1.18 0.3
 Transparent clear APPLICATIONS: Store fixtures and displays Lenses and lighting fixtures Windows and skylights Outdoor signs Sculpture 	MECHANICAL Tensile Strength (psi) Tensile Modulus (psi) Tensile Elongation at Break (%) Felxural Strength (psi) Felxural Modulus (psi) Compressive Strength (psi) Compressive Modulus (psi)	D638 D638 D638 D790 D790 D695 D695	8,000 - 11,000 350,000 - 500,000 2 12,000 - 17,000 350,000 - 500,000 11,000 - 19,000
MATERIAL AVAILABILITY:Rods:0.50" to 15"Sheet:1/16" to 5"	Hardness Rockwell Izod Notched Impact (ft-Ib.in)	D785 D256	 M80 – M100 0.30
GRADES/COLOURS: Acrylic: Clear to Rainbow	THERMAL Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F) Heat Deflection Temp (°F/°C) at 264 psi Melting Temp (°F/°C) Max Operating Temp (°F/°C) Thermal Conductivity (BTU-in/ft ² /-hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C) Flammability Rating	D696 D648 D3418 - C177 C177 UL94	5 - 9 150 - 210 / 65 - 100 - / - 150 - 200 / 65 - 93 3.9 1.2 HB
	ELECTRICAL Dielectric Strength (V/mil) short time, 1/8" thick Dielectric Constant at 60 Hz Dielectric Factor at 60 Hz	D149 D150 D150	400 4.0 0.05

Acrylic AC-300TM / AC-350TM

(Anti-Static)

CHARACTERISTICS:

- Electrostatic decay in less than 0.05 second per Federal Test Standard 101C, Method 4046.1 (rapid dissipation without arcing)
- · Ideal surface resistivity without need for ionizers or coatings
- Permance in static dissipation performance without periodic recoating
- · Humidity-independent static charge control
- · Superior fabrication characteristics offer simplified design and installation

APPLICATIONS:

- Widely used in clean rooms by the semiconductor, electronic, micromanufacturing, pharmaceutical, and biomedical industries ..
- Perimeter windows, transparent room partitions,
- Mini-environment glazing panels
- Equipment enclosures

MATERIAL AVAILABILITY:

Sheet: 1/8", 3/16", 1/4", 3/8" and 1/2" Size: 4ft x 8ft

GRADES/COLOURS:

AC-300 [™] :	Clear & tinted
AC-350 [™] :	Clear & tinted

Acrylic AC-300 [™] & AC-350 [™] General Properties	ASTM or UL Test	AC-300™ Flat Sheet	AC-350™ Heat-Formable
PHYSICAL			
Special Gravity (g/cm ³)	D792	1.19	1.19
MECHANICAL			
Tensile Strength (psi)	D638	10,000	10,000
Tensile Modulus (psi)	D638	400,000	400,000
Tensile Elongation at Break (%)	D638	4.5	4.5
Felxural Strength (psi)	D790	16,500	16,500
Felxural Modulus (psi)	D790	475,000	475,000
Compressive Strength (psi)	D695	18,000	18,000
Izod Notched Impact (ft-Ib.in)	D256	0.4	0.4
THERMAL			
Coeff. of Linear Thermal Expansion			
(x 10 ⁻⁵ in./in./°F)	D696	4.0	4.0
Heat Deflection Temp (°F/°C) at 264 psi	D648	205/96	205 / 96
Melting Temp (°F/°C)	D3418	239 / 115	239 / 115
Max Operating Temp (°F/°C)	_	170 / 77	170 / 77
Thermal Conductivity			
(BTU-in/ft ² /-hr-°F)	C177	1.3	1.3
$(x \ 10^{-4} \ cal/cm-sec^{\circ}C)$	C177	4.5	4.5
Flammability Rating	UL94	HB	HB
ELECTRICAL			
Surface Resistivity (ohms/sq) at 50% RH	D257	10 ⁶ - 10 ⁸	$10^{6} - 10^{8}$

Acrylic AC-300[™] & AC-350[™] are the registered trademarks of Scicron Technologies

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Celazole®

(PBI (CM), Polybenzimidazole, unfilled, compression molded)

CHARACTERISTICS: Celazole® ASTM or Typical • Extremely high max. allowable **General Properties** UL Test Values service temperature in air (310°C continuously to 500°C for short PHYSICAL period of time) Specific Gravity (g/cm³) D792 1.3 • Extremely low coefficient of linear Water Absorption Immersion, 24 hr., % D570 0.4 thermal expansion up to 250°c • Good electrical insulating and **MECHANICAL** dielectric properties Tensile Strength, psi 20,000 D638 • Low outgassing in vacuum (dry Tensile Modulus, psi 850,000 D638 material) Elongation, % D638 3 High purity in terms of ionic Flexural Strength, psi D790 32.000 contamination Flexural Modulus, psi 950.000 D790 Compressive Strength, psi D695 50,000 **APPLICATIONS:** Compressive Modulus, psi 900,000 D695 • High heat insulator bushings Hardness, Rockwell E D785 105 Electrical connectors Hardness, Rockwell M D785 125 Ball valve seats Hardness, Durometer, Shore D Scale D2240 94 • Clamp rings - gas plasma eching Izod Impact (Notched), ft-lb/in D256 Type A 0.5 eqiupment Coefficient of Friction, Dynamic Dry vs. Steel, PTM55007 0.24 **MATERIAL AVAILABILITY:** Limiting PV, psi-fpm PTM55007 37.500 Rods: 3/8" to 4" k (wear) factor, 10⁻¹⁰ in³-min/lb-ft-hr PTM55007 60 Sheet: 1/2" to 1 1/2" THERMAL **GRADES/COLOURS:** Coeff. of Thermal Expansion, 10E-4/°F E831 (TMA) 0.13 Celazole PBI (CM): Black Deflection Temperature 264 psi, °F D648 800 Tg-Glass Transition (Amorphous), °F D3418 750 Continuous Service in Air (Max), °F Without Load 600 Thermal Conductivity, BTU-in/hr-ft2-°F 2.8 **ELECTRICAL** Dielectric Strength, Short Term, Volts/mil D149(2) 550 Surface Resistance, Ohm/Sq Lower Limit; EOS/ESD S11.11 1E+13 Dielectric Constant, 1 MHz D150(2) 3.2 Dissipation Factor, 1 MHz D150(2) 0.003

Celazole® is the registered trademark of Celanese Acetate

Celtec[®] Rigid Foam PVC

CHARACTERISTICS:

- Celtec meets UL94 5V, UL 1975 and has a flame spread of 20 according to ASTM E84.
- Celtec has a closed cell structure and has extremely low water absorption values.
- Celtec is more color-fast than other foam PVC products.
- Celtec has excellent insulating characteristics.

APPLICATIONS:

- Displayboard
- Signage, exhibits
- Kiosks, screen printing
- Cabinetry
- Wood replacement projects.
- Industrial and commercial signage
- Strong choice for three-dimensional exhibits
- Stage sets

MATERIAL AVAILABILITY:

Sheet: 1mm to 25mm

GRADES/COLOURS:

Celtec®: Rainbow

Celtec®	ASTM or	J 1	
General Properties	UL Test	1mm – 6mm	10mm – 25mm
PHYSICAL			
Density g/cm ³	D792	0.70	0.55
Water Absorption %	D570	0.3	0.15
Water Absorption %	D2842	0.9	_
MECHANICAL			
Tensile Strength psi	D638	3,000	2,256
Tensile Modulus psi	D638	232,000	144,000
Flexural Strength psi	D790		3,329
Flexural Modulus psi	D790	_	144,219
Nail Hold Lbf/in of penetration	D1761	_	35
Screw Hold Lbf/in of penetration	D1761	_	680
Staple Hold Lbf/in of penetration	D1761	_	180
Gardner Impact in/lbs	D4228	_	103
Izod Impact Strength ft-lb/in	D256	0.53	_
Charpy Impact (Un-notched @23°) ft-lb/in	D256	8.1	4.5
THERMAL			
Heat Deflection Temp (264 psi) °F	D648	151	150
Coeff. of Linear Expansion in/in/°F	D696	4.0 x 10 ⁻⁵	3.2 x 10 ⁻⁵
Thermal Conductivity W/mK	C177	0.084	_
FLAMMABILITY RATINGS			
Burning Rate in/min	_	No burn when	No burn when
		flame removed	flame removed
Flame Spread Index	E84	20	20
Vertical Burn Test	UL94	5-V	_
Foam Fire Test	UL1975	Passed/Classied	_
Oil Canning (@140°) °F	D648	_	Passed
ELECTRICAL			
Dielectric Strength kV/cm	D149	112	_

Celtec[®] is the registered trademark of Compression Polymer Corp.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

CorzanTM (CPVC ASTM-D-1784-95 CLASS 23447-B)

 CHARACTERISTICS: Corzan CPVC is a high heat, corrosion resistant 	Corzan [™] General Properties	ASTM to UL Test	Typical Values
 Corzan can be machined, cut, routed 			
and welded.	PHYSICAL		
• Corzan is self extinguishing and has a	Specific Gravity g/cm ³	D 792	1.47
flame spread of less than 20.	Water Absorption %	D 570	0.03
• Corzan has outstanding strength	Rockwell Hardness R Scale	D 785	116
through a range of temperatures.	Cell Class	D 1784	24446-B
• Corzan has excellent impact strength.	MECHANICAL		
 Corzan has excellent chemical 		D 256	0
resistance to acids and alkalis.	Izod Impact (Notched) ft-lb/in o.n.	D 256	9
	Tensile Strength psi	D 638	7,300
APPLICATIONS:	Flexural Strength psi	D 790	14,300
• Semi-conductor process Industry ,wet	Flexural Modulus psi	D 790	361,000
process equipment, value boxes, air	Compressive Strength psi	D 695	10,100
handling and ventilation, wafer clean	Compressive Modulus psi	D 695	196,000
& rinse, printed circuit			
rinse, equipment installed in a clean	THERMAL	D (0)	2.04 10.5
room.pump component &	Coeff. of Thermal Expansion in/in/°F	D 696	3.86 x 10 ⁻⁵
housings,tanks & linings.	Thermal Conductivity BTU/in/hr/ft ³ /°F	C 177	0.95
	Heat Distortion Temperature		
MATERIAL AVAILABILITY:	@ 264 psi °C /°F	D 648	92/198
Sheet: 1/8" to 3"			
	FLAMMABILITY RATINGS		0.0(0"
GRADES/COLOURS:	Flammability V-0, 5VB, 5VA	UL 94	0.062"
Corzan [™] CPVC: Grey	Flame Spread	E 84	15
5	Smoke Developed	E 84	70 – 125
	Limiting Oxygen Index %	D2863	60
	ELECTRICAL		
	Dielectric Strength Volt/MIL	D 147	1,250
	Dielectric Constant 60 HZ	D 150	3.70
	Power Factor 1000 HZ	D 150	0.007%
	Volume Resistivity Ohm/cm	D 257	$3.4 \ge 10^{15}$

Corzan[®] is the registered trademark of Compression Polymers Corp.

Delrin[®]

Acetal, homopolymer, unfilled, extruded

CHARACTERISTICS:	Delrin®	ASTM to	Typical
Good dimensional stability	General Properties	UL Test	Values
Low moisture absorption	General Troperties	OL ICSI	values
Excellent machinability	PHYSICAL		
High fatigue endurance	Specific Gravity (g/cm ³)	D792	1.41
• Superior impact and creep resistance		D792 D570	0.2
Chemical resistance to fuels and	Water Absorption Immersion, 24 hr., %	D570	0.2
solvents.	MECHANICAL		
 Natural garde is FNA,NSF and 		D(20	11.000
USDA compliant	Tensile Stength, psi	D638	11,000
	Tensile Modulus, psi	D638	450,000
APPLICATIONS:	Elongation, %	D638	30
• Valve components including gears,	Flexural Strength, psi	D790	13,000
bearing, bushings, rollers fitting,	Flexural Modulus, psi	D790	450,000
electrical insulator parts & electronics	Shear Strength, psi	D732	9,000
component	Compressive Strength, psi	D695	16,000
	Compressive Modulus, psi	D695	450,000
MATERIAL AVAILABILITY:	Hardness, Rockwell M	D785	89
Sheet: 1/8" to 10"	Hardness, Rockwell R	D785	122
Size: 1/4" to 4"	Hardness, Durometer, Shore D Scale	D2240	86
	Izod Impact (Notched), ft-lb/in	D256 Type A	1
GRADES/COLOURS:	Coefficient of Friction, Dynamic	Dry vs. Steel, PTM55007	0.25
Derlin [®] : Black/White (Natural)	Limiting PV, psi-fpm	PTM55007 PTM55007	2,700
	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007 PTM55007	2,700
	k (wear) factor, 10 in -film/10-ft-fil	F1W155007	200
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.47
	Deflection Temperature 264 psi, °F	D648	250
	Melting Point (Crystalline) Peak, °F	D3418	347
	Continuous Service in Air (Max), °F	Without Load	180
	Thermal Conductivity, BTU-in/hr-ft ² -°F		2.5
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	450
	Surface Resistance, Ohm/Sq	EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	3.7
	Dissipation Factor, 1 MHz	D150(2)	0.005

Delrin[®] is the registered trademark of Dupont

Delrin[®] AF Blend

Acetal homopolymer, PTFE-filled, extruded

 CHARACTERISTICS: Combination of Teflon® fibers Strength & toughness 	Delrin [®] AF Blend General Properties	ASTM to UL Test	Typical Values
Good machinability	PHYSICAL		
Excellent sliding/friction properties		D792	15
Reduced wear	Specific Gravity (g/cm ³)		1.5
Static and dynamic coefficient of friction	Water Absorption Immersion, 24 hr., %	D570	0.2
metion	MECHANICAL		
APPLICATIONS:	Tensile Strength, psi	D638	8,000
• Valve components, include gears,	Tensile Modulus, psi	D638	435,000
bearings, bushings, rollers, fittings,	Elongation, %	D638	15
electrical insulator parts & electronics	Flexural Strength, psi	D790	12,000
component.	Flexural Modulus, psi	D790	445,000
component.	Shear Strength, psi	D732	7,600
MATERIAL AVAILABILITY:	Compressive Strength, psi	D695	16,000
Rod: $1/8$ " to 10"	Compressive Modulus, psi	D695	350,000
Sheet: 1/4" to 4"	Hardness, Rockwell M	D785	85
Sileet. 1/4 to 4	Hardness, Rockwell R	D785	115
CDADES/COLOUDS.	Hardness, Durometer, Shore D Scale	D2240	83
GRADES/COLOURS:	Izod Impact (Notched), ft-lb/in	D256	0.7
Delrin [®] AF Blend: Dark Brown	Coefficient of Friction, Dynamic	Dry vs. Steel, PTM55007	0.19
	Limiting PV, psi-fpm	PTM55007	8,300
	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	60
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.5
	Deflection Temperature 264 psi, °F	D648	244
	Melting Point (Crystalline) Peak, °F	D3418	347
	Continuous Service in Air (Max), °F	Without Load	180
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	400
	Surface Resistance, Ohm/Sq	Lower Limit;	100
	Sarree resistance, onin oq	EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	3.1
	Dissipation Factor, 1 MHz	D150(2)	0.01

Delrin[®] AF Blend is the registered trademark of Dupont

Duratron[®] XP (CM)

Polyimide, high purity, unfilled, compression molded

CHARACTERISTICS:	Duratron [®] XP (CM)	ASTM to	Typical
• Wide range of operating temperatures from – 270°C to + 300°C, unaffected	General Properties	UL Test	Values
 by thermal shock conditions Suitable for use briefly up to + 350°C High strength and high creep resistance in continuous use 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., %	D792 D570	1.4 0.4
 Outstanding sliding properties and wear resistance Low thermal conductivity Electrical insulating properties 	MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, %	D638 D638 D638	16,000 583,000 4
 APPLICATIONS: Automative, marine, nuclear, oil well, electronics, medical and aerospace fields 	Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M	D790 D790 D695 D695 D785	20,000 600,000 24,000 450,000 112
MATERIAL AVAILABILITY: Rod: 1/4" to 3" Sheet: 1/4" to 2"	Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm	D256 Dry vs. Steel, PTM55007 PTM55007	1.4 0.23 32,500
GRADES / COLOURS:	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	50
Duratron [®] XP (CM): Black	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.27 680 613 580 1.53
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	700 1E+13 3.41 0.0038

Duratron® XP (CM) is the registered trademark of Quadrant Engineering Plastics Products

Duratron[®] 150 PI

15% Graphite Filled, Bearing Grade, Compression Molded Polyimide

 CHARACTERISTICS: Wide range of operating temperatures from – 270°C to + 300°C, unaffected 	Duratron [®] 150 PI General Properties	ASTM or UL Test	Typical Values
 by thermal shock conditions Suitable for use briefly up to + 350°C High strength and high creep resistance in continuous use Outstanding sliding properties and wear resistance Low thermal conductivity Electrical insulating properties 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % 	D792 D570 D638 D638 D638	1.49 0.65 9,600 650,000 1.5
 APPLICATIONS: Automative, marine, nuclear, oil well, electronics, medical and aerospace fields MATERIAL AVAILABILITY: Rod: 1/4" to 3" Sheet: 1/4" to 2" GRADES / COLOURS: 	Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D790 D790 D695 D695 D785 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	$ \begin{array}{r} 13,000\\610,000\\17,000\\390,000\\110\\0.5\\0.27\\41,500\\35\end{array} $
Duratron [®] 150 PI (CM), 15% Graphite Filled: Black	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL PROPERTIES Surface Resistance, Ohm/Sq	E831 (TMA) D648 D3418 Without Load Upper Limit; EOS/ESD S11.11	0.19 599 613 580 3.74 100,000

Duratron[®] 150 PI is the registered trademark of Quadrant Engineering Plastics Products

Ertalyte[®] PET-P

Polyester-semi-crystalline thermoplastic, extruded

CHARACTERISTICS: FDA and USDA compliant Very good creep resistance	Ertalyte [®] PET-P General Properties	ASTM or UL Test	Typical Values
Low and constant coefficient of	PHYSICAL		
friction	Specific Gravity (g/cm ³)	D792	1.41
Very good dimensional stability	Water Absorption Immersion, 24 hr., %	D792 D570	0.07
Better resistance to acids than nylon	water Absorption miniersion, 24 m., 70	DSTO	0.07
and polyacetal	MECHANICAL		
Good electrical insulating properties	Tensile Strength, psi	D638	12400
Good resistance to high energy	Tensile Modulus, psi	D638	460,000
radiation (gamma and X-rays)	Elongation, %	D638	20
DDI ICATIONS.	Flexural Strength, psi	D790	18,000
APPLICATIONS:	Flexural Modulus, psi	D790	490,000
Water purification systems, printing	Shear Strength, psi	D732	8,000
equipment, textile components food-	Compressive Strength, psi	D695	15,000
handling equipment and valves.	Compressive Modulus, psi	D695	420,000
	Hardness, Rockwell M	D785	93
IATERIAL AVAILABILITY:	Hardness, Rockwell R	D785	125
od: 1/4" to 8"	Hardness, Durometer, Shore D Scale	D2240	87
heet: 1/4" to 4"	Izod Impact (Notched), ft-lb/in	D256	0.5
	Coefficient of Friction, Dynamic	Dry vs. Steel,	
GRADES / COLOURS:		PTM55007	0.2
Trtalyte [®] PET-P: Black / White (Natural)	Limiting PV, psi-fpm	PTM55007	2,800
	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	60
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.33
	Deflection Temperature 264 psi, °F	D648	240
	Melting Point (Crystalline) Peak, °F	D3418	491
	Continuous Service in Air (Max), °F	Without Load	210
	Thermal Conductivity, BTU-in/hr-ft ² -°F		2
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	385
	Surface Resistance, Ohm/Sq	Lower Limit;	505
	Surrace resistance, Sum Sq	EOS/ESD S11.11	1E+13

Ertalyte® PET-P is the registered trademark of Quadrant Engineering Plastics Products

Ertalyte[®] TX

Polyester-semi-crystalline thermoplastic with solid lubricant, extruded

CHARACTERISTICS:FDA and USDA compliantVery good creep resistance	Ertalyte [®] TX General Properties	ASTM or UL Test	Typical Values
 Low and constant coefficient of friction Very good dimensional stability Better resistance to acids than nylon and polyacetal Good electrical insulating properties Good resistance to high energy radiation (gamma and X-rays) APPLICATIONS: Water purification systems, printing equipment, textile components food- 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi 	D792 D570 D638 D638 D638 D638 D790 D790 D790 D732	1.44 0.06 11,000 500,000 5 14,000 360,000 8,500
handling equipment and valves. MATERIAL AVAILABILITY: Rod: 1/4" to 8" Sheet: 1/4" to 4" GRADES / COLOURS: Ertalyte® TX: Pale Grey	Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D695 D695 D785 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	15,250 400,000 94 0.4 0.19 6,000 35
	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Surface Resistance, Ohm/Sq	E831 (TMA) D648 D3418 Without Load Lower Limit; EOS/ESD S11.11	0.45 180 491 210 1.9 1E+13

Ertalyte® TX is the registered trademark of Quadrant Engineering Plastics Products

FlametecTM CP7-D

CHARACTERISTICS:	Flametec™ CP7-D	ASTM or	Typical
• Flame retardant polypropylene formulation	General Properties	UL Test	Values
Meet or exceed the most rigorous FMRC 4910 testing standardsFlame retardation, self-extinguishing	PHYSICAL Density @ 23°C g/cm ³	D 792	1.38
 characteristics and burnthrough Low smoke generation and minimal toxic by-products. CP7-D is a filled PP sheet material 	MECHANICAL Tensile Strength psi Elongation at Yield %	D 638 D 638	2,500 4.0
 Fabricate with conventional welding equipment An economical alternative for fire safe 	Flex Modulus psi Izod Impact (notched 1/8 in.) ft-lb/in Hardness (Shore D) 10 sec.	D 790 D 256 D 785	450,000 10.1 67
 An economical anemative for fire safe construction. FMRC 4910, fire safe materials for clean room construction 	Corner Weld Strength lbs/linear inch THERMAL	CPC Test	467
APPLICATIONS:	Heat Deflection temperature 66 psi Vicat Softening Point 1 kg	D 648 D 1525	248°F 299 Deg. F
• Semi conductor process industry, valve boxes, air handling and ventilation, wafer clean and rinse,	FLAMMABILITY Factory Mutual		
printed circuit rinse, tanks and linings, pump components and housings, equipment in a clean room	FPI SDI Flammability Rating	File #3D7Q7.AM –	<4.2* < 0.01*
MATERIAL AVAILABILITY:	ETL Labs ETL Labs Flammability Rating	per UL 94 Test per UL 94 Test	V-0 5VA
Sheet: 1/8" to 2" GRADES / COLOURS:	ETL Labs ETL Labs	E84 Tunnel Test Meets Class A	< 25 flame < 100 smoke
Flametec TM CP7-D: White			

Flametec[™] CP7-D is the registered trademark of Compression Polymers Corp.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

FlametecTM CPVC

 CHARACTERISTICS: Flametec[™] CPVC made from Corzan[®] 4910 white 	Flametec™ CPVC General Properties	ASTM or UL Test	Typical Values
• High heat, corrosion resistant	PHYSICAL		
• Excellent corrosion resistance at	Specific Gravity g/cm ³	D792	1.55
elevated temperatures	Water Absorption %	D570	.03
• Used (depending on chemistry) up to 212°F		2570	.05
Meet FM 4910 clean room protocol	MECHANICAL		
 Meet FM 4910 clean room protocol Non-fire-propagating material 	Rockwell Hardness R Scale	D785	119
 Has a class 1 rating in accordance to 	Izod Impact (Notched) ft-lb/in o.n.	D256	1.5
UL 2360e	Tensile Strength psi	D638	7,900
UL 2300e	Flexural Strength psi	D790	14,500
APPLICATIONS:	Flexural Modulus psi	D790	457,000
	Compressive Strength psi	D695	10,100
• Semi conductor process industry, valve boxes, air handling and	Compressive Modulus psi	D695	196,000
valve boxes, an handling and ventilation, wafer clean and rinse,			
printed circuit rinse, tanks and linings,	THERMAL		
pump components and housings,	Coeff. of Thermal Expansion in/in/°F	D696	3.7 x 10 ⁻⁵
equipment in a clean room	Thermal Conductivity BTU/in/hr/ft ² /°F	C 177	0.95
equipment in a clean room	Heat Distortion Temperature @ 264 psi °C/°F	D648	103/217
MATERIAL AVAILABILITY:	FLAMMABILITY RATINGS		
Sheet: 1/8" to 2"	Flammability Rating V-0, 5VB, 5VA	UL 94	0.062"
Sheet. 176 to 2	Limited Oxygen index %	D2863	60
GRADES / COLOURS:	Factory Mutual	File # 3002299	4910 Listed
Flametec [™] CPVC: White			
Flance Cr VC. White	ELECTRICAL		
	Dielectric Strength Volt/MIL	D147	1250
	Dielectric Constant 60 HZ	D150	3.70
	Power Factor 60 HZ	D150	0.007%
	Volume Resistivity Ohm/cm	D257	3.4 x 10 ¹⁵

 $\mathit{Flametec}\,{}^{{}_{\mathbb{T}\!M}}\,\mathit{CPVC}\,\mathit{is}\,\mathit{the}\,\mathit{registered}\,\mathit{trademark}\,\mathit{of}\,\mathit{Compression}\,\mathit{Polymers}\,\mathit{Corp}.$

FlametecTM Cleanroom PVC-C

 CHARACTERISTICS: Economical choice in FM 4910 materials Compatible with Corzan[®] 4910 CPVC. Handle structural applications Listed in accordance to FM 4910 fire safe materials Clean room construction JI 3010757. 	Flametec™ Cleanroom PVC-C General Properties	ASTM or UL Test	Typical Values
	PHYSICAL Specific Gravity g/cm ³ Rockwell Hardness R Scale MECHANICAL Izod Impact (Notched) Tested	D792 D785	1.55 114
APPLICATIONS: • Semi conductor process industry, valve boxes, air handling and ventilation, wafer clean and rinse, printed circuit rinse, tanks and linings, pump components and housings, equipment in a clean room	w/grain - compression molded @ 73°F (23°C) Tensile Strength @ 0.2"/min psi Tensile Modulus @ 0.2"/min psi Flexural Strength psi Flexural Modulus psi THERMAL Coeff. of Linear Expansion in/in/°F	D256 D638 D638 D790 D790 D696	3 ft-1b/in 7,000 450,000 12,000 400,000 6.9 x 10 ⁻⁵
MATERIAL AVAILABILITY: Sheet: 1/8" to 1"	Heat Distortion Temperature @ 264 psi °C /°F	D648	176°F
GRADES / COLOURS: Flametec [™] Cleanroom PVC-C: White	FLAMMABILITY RATINGS Flammability Rating UL 2360 FPI SDI Flammability Rating FM 4910 FPI SDI	UL 2360 _ FM 4910 _	1.6 0.06 2.00 0.10

Flametec[™] Cleanroom PVC-C is the registered trademark of Compression Polymers Corp.

FlametecTM Halar[®] ECTFE

 CHARACTERISTICS: Flametec[™] Halar[®] ECTFE is an ultrapure fluoropolymer 	Flametec™ Halar [®] ECTFE General Properties	ASTM or UL Test	Typical Values
 Mechanically both strong and tough, exhibiting high dielectric strength Highly resistant to most environmental conditions, including corrosive chemicals and organic solvents, strong acids, alkaline, peroxide Aqueous caustics for handling wet or dry chlorine, bromine Extremely strong welds. High tensile properties and it is very ductile. Accepted in accordance to FM4910, fire safe materials for clean room construction. APPLICATIONS: Semi conductor process industry, valve boxes, air handling and ventilation, wafer clean and rinse, printed circuit rinse, tanks and linings, pump components and housings, equipment in a clean room 	PHYSICAL Specific Gravity g/cm ³ Water Absorption %	D792 D570	1.68 < 0.1
	MECHANICAL Tensile Strength @ Break psi Tensile Strength @ Yield psi Elongation @ Break % Flexural psi Modulus Izod Impact Notched @ 23°C (73°F) ft-lbs/in @ 40°C (104°F) ft-lbs/in Hardness RockwellR/ShoreD Abrasion Resistance per 1000 revs Notch Sensitivity	D638 D638 D638 D790 D256 D256 D785 Taber D 1044	7,800 4,300 250 245,000 No Break 2.3 90 / 71 0.006 Not Sensitive
	THERMAL Maximum Use Temperature °F Thermal Expansion in/in/°F Heat Distortion Temp @ 66psi °F FLAMMABILITY	 D696 D648	300 5.6 x 10 ⁻⁵ 194
MATERIAL AVAILABILITY: Sheet: 1/8" to 2"	Factory Mutual Oxygen Index %	File#4D7Q9.AM D863	4910 Listed 52 Minimum
GRADES / COLOURS: Flametec [™] Halar [®] ECTFE: Opaque	SURFACE SMOOTHNESS Mean Roughness SDI Biofilm Buildup(2) CDI		0.15 1.0
	CHEMICAL RESISTANCE ECTFE has excellent resistance to strong acids a	such as sulfuric, nitric	, hydrochloric

ECTFE has excellent resistance to strong acids such as sulfuric, nitric, hydrochloric and hydrofluoric over a wide temperature range. ECTFE can also easily handle powder bleaching agents such as sodium hydroxide and potassium hydroxide that would stress crack PVDF. ECTFE 901 can handle strong polar solvents that would dissolve PVDF such as n-Methyl pyrrolidone and dimethyl formamide.

*Flametec*TM *Halar*[®] *ECTFE is the registered trademark of Compression Polymers Corp.*

FlametecTM Kytec[®] PVDF

CHARACTERISTICS:	Flametec™ Kytec [®] PVDF	ASTM or	Typical
• Exposed to harsh thermal, chemical,	General Properties	UL Test	Values
and ultraviolet environments.	•		
• Continuous use temperature of 235° F	PHYSICAL		
• Chemically resistant to most acids,	Specific Gravity g/cm ³	D792	1.77 – 1.79
bases, and organic solvents	Moisture Absorption %	D570	0.02
• Suited for handling wet or dry chlorine, bromine and other halogens.	Ĩ		
Easy to fabricate and	MECHANICAL		
thermoplastically weldable.	Hardness Shore D	D2240	76 - 80
 Good tensile strength and mechanical 	Tensile Strength @ Break @ 23°C psi	D638	6,000
abrasion resisitance.	Tensile Strength @ Yield @ 23°C psi	D638	6,500
 An ultra-pure material. 	Elongation @ Break @ 23°C%	D638	50 - 250
 Resistance to a broad range of 	Elongation @ Yield @ 23°C%	D638	10
chemistries.	Tensile Modulus @ 23°C psi	D638	225,000
 Meets FM4910 criteria and is FM 	Flexural Strength @ 23°C psi	D790	6,960 - 8,000
listed.	Flexural Modulus @ 23°C psi	D790	250,000
	Izod Impact (Unnotched) @ 23°C J/m	D256	80 - 130
APPLICATIONS:	Compressive Strength @ 23°C (min) Mpa	D695	61 minimum
 Semi conductor process industry, 	Coefficient of Friction		
valve boxes, air handling and	Static	D1894	0.15 - 0.25
ventilation, wafer clean and rinse,	Dynamic	D1894	0.10 - 0.25
printed circuit rinse, tanks and linings,			
pump components and housings,	THERMAL		
equipment in a clean room	Heat Distortion Temperature TMA		
	@ 66 psi (0.46 Mpa) °C (°F)	—	125 – 140
MATERIAL AVAILABILITY:	@ 264 psi (1.82 Mpa) °C (°F)	—	105 – 115
Sheet: 1/8" to 2"	Thermal Conductivity @ 23°C–130°C	0.155	0.10 0.00
	W/m/k (BTU/in)/(HR/ft/°F)	C 177	0.19 - 0.22
GRADES / COLOURS:	Coeff. of Thermal Expansion $^{\circ}C^{-1}(^{\circ}F^{-1})$	D696	$10 - 12 \times 10^{-5}$
Flametec [™] Kytec [®] : Natural Opaque	Brittleness Temperature °C (°F)	D2236	-43 (-46)
2 1 1			
	FLAMMABILITY	E1 #2D105 AM	4010 1 4 1
	Factory Mutual	File #3D1Q5.AM	4910 Listed
	Limiting Oxygen Index %	D2863	43
	ELECTRICAL		
	Volume Resistivity ohm/cm	D257	1.4 x 10 ¹⁵
	Dielectric Constant		
	@ 60 Hz	D150	6.8
	@ 1 KHz	D150	6.9
	@ 1 MHz	D150	6.0
	Dissipation Factor		
	@ 60 Hz	D150	0.032
	@ 1 KHz	D150	0.013
	@ 1 MHz	D150	0.153
	Arc Resistance, minimum (sec)	D495	50
	Dielectric Strength, 0.125" thick, V/mil	D149	310
	Dissipation Factor, 60 Hz	D150	0.0019

*Flametec*TM *Kytec*[®] *PVDF is the registered trademark of Compression Polymers Corp.*

Fluorosint[®] 207 (CM)

PTFE, synthetic mica-filled, FDA compliant, compression molded

CHARACTERISTICS:	Fluorosint [®] 207 (CM)	ASTM	Typical	
• Very high max. allowable service	General Properties	UL Test	Values	
temperature in air (continuously 260°C)				
 Excellent chemical and hydrolysis 	PHYSICAL			
resistance	Specific Gravity (g/cm ³)	D792	2.3	
Good wear resistance	Water Absorption Immersion, 24 hr., %	D570	0.03	
 Low coefficient of friction 				
 Very good dimensional stability 	MECHANICAL			
 Good electrical insulating properties 	Tensile Strength, psi	D638	1,500	
• Outstanding UV-and weather	Tensile Modulus, psi	D638	250,000	
resistance	Elongation, %	D638	50	
• Inherent low flammability	Flexural Strength, psi	D790	2,000	
• Fluorosint is FDA, USDA compliant	Flexural Modulus, psi	D790	350,000	
-	Shear Strength, psi	D732	1,700	
APPLICATIONS:	Compressive Strength, psi	D695	3,800	
• Labyrinth seals and shrouds	Compressive Modulus, psi	D695	225,000	
• Dishwasher arm bearing	Hardness, Rockwell R	D785	50	
• Transmission and power steering seal	Hardness, Durometer, Shore D Scale	D2240	65	
rings	Izod Impact (Notched), ft-lb/in	D256	1	
• Valve seats	Coeff. of Friction, Dynamic	Dry vs. Steel, PTM55007	0.1	
• Pharmaceutical and medical industries	Limiting PV, psi-fpm	PTM55007 PTM55007	0.1 8,000	
	k (wear) factor, 10^{-10} in ³ -min/lb-ft-hr	PTM55007 PTM55007	30	
MATERIAL AVAILABILITY:	K (wear) factor, 10 - in - init/10-it-in	F110155007	30	
Rod: 0.5" to 9"	THERMAL			
Sheet: 0.25" to 3"	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.57	
	Deflection Temperature 264 psi, °F	D648	210	
GRADES / COLOURS:	Melting Point (Crystalline) Peak, °F	D048 D3418	621	
Fluorosint [®] 207: White	Continuous Service in Air (Max), °F	Without Load	500	
	Continuous Service In Air (Wax), 1	Without Load	500	
	ELECTRICAL			
	Dielectric Strength, Short Term, Volts/mil	D149(2)	200	
	Surface Resistance, Ohm/Sq	Lower Limit;		
		EOS/ESD S11.11	1E+12	
	Dielectric Constant, 1 MHz	D150(2)	2.65	
	Dissipation Factor, 1 MHz	D150(2)	0.008	

Fluorosint[®] 207 (CM) is the registered trademark of Quadrant Engineering Plastics.

Fluorosint[®] 500 (CM)

PTFE, synthetic mica-filled, compression molded

CHARACTERISTICS:	Fluorosint [®] 500 (CM)	ASTM	Trusteel
• Very high max. allowable service	General Properties	UL Test	Typical Values
temperature in air (continuously 260°C)		OL lest	values
• Excellent chemical and hydrolysis	PHYSICAL		
resistance	Specific Gravity (g/cm ³)	D792	2.32
Good wear resistance	Water Absorption Immersion, 24 hr., %	D570	0.1
Low coefficient of friction	MECHANICAL		
• Very good dimensional stability	Tensile Strength, psi	D638	1,100
• Good electrical insulating properties	Tensile Modulus, psi	D638	300,000
• Outstanding UV-and weather	Elongation, %	D638	10
resistance	Flexural Strength, psi	D790	2,200
• Inherent low flammability	Flexural Modulus, psi	D790	500,000
	Shear Strength, psi	D732	2,100
APPLICATIONS:	Compressive Strength, psi	D695	4,000
• Labyrinth seals and shrouds	Compressive Modulus, psi	D695	250,000
• Dishwasher arm bearing	Hardness, Rockwell R	D785	55
• Transmission and power steering seal	Hardness, Durometer, Shore D Scale	D2240	70
rings	Izod Impact (Notched), ft-lb/in	D256	0.9
• Valve seats	Coefficient of Friction, Dynamic	Dry vs. Steel,	
• Bearings		PTM55007	0.15
	Limiting PV, psi-fpm	PTM55007	8,000
MATERIAL AVAILABILITY:	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	600
Rod: 0.5" to 9"			
Sheet: 0.25" to 3"	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.25
GRADES / COLOURS:	Deflection Temperature 264 psi, °F	D648	270
Fluorosint [®] 500: Ivory	Melting Point (Crystalline) Peak, °F	D3418	621
	Continuous Service in Air (Max), °F	Without Load	500
	Thermal Conductivity, BTU-in/hr-ft ² -°F	-	5.3
	•		
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	275
	Surface Resistance, Ohm/Sq	Lower Limit;	
		EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	2.85
	Dissipation Factor, 1 MHz	D150(2)	0.008

Fluorosint[®] 500 (CM) is the registered trademark of Quadrant Engineering Plastics.

Glass-Based Laminates

NEMA Grades G-5, G-7, G-9, G-10, G-11

CHARACTERISTICS:

- Versatility of fabrication
- Excellent electrical properties
- Components
- High impact and compressive strengths
- Easy to saw, drill, tap, and machine with ordinary tools. "FR" grades are flame retardant.
- Dimensional stability and mechanical strength

APPLICATIONS:

- Switch board panels, arc barriers, circuit breaker parts
- Structural electrical parts
- Heating & appliance insulation.
- Electrical and electronic test equipment
- Electric rotor insulation
- FR-4 is a fire-retardant G-10 glassepoxy laminate
- Printed circuit board industry

MATERIAL AVAILABILITY:

Rod: 1/4" to 6" Sheet: 0.02" to 5"

GRADES / COLOURS:

G-5, G-9:	Brown
G-7:	White
G-10:	Green
G-11:	Dark Brown

Glass-Based Laminates	ASTM or	r Typical Values			
General Properties	UL Test	G-5/G-9	G-7	G-10	G-11
PHYSICAL					
Specific Gravity (g/cm ³)	D792	1.85	1.80	1.80	1.80
Water Absorption, 24 hrs (%)	D570	0.60	0.10	0.10	0.20
MECHANICAL					
Tensile Strength (psi)					
-lengthwise	D638	61,600	20,000	45,000	43,000
-crosswise		51,100	_	38,000	37,000
Flexural Strength (psi)					
-lengthwise	D790	61,600	30,000	75,000	80,000
-crosswise		51,100	_	65,000	70,000
Flexural Modulus (Kpsi)					
-lengthwise	D790	2,000	1,600	2,700	3,000
-crosswise		1,700	_	2,400	2,700
IZOD Notched Impact (ft-lb/in)					
-lengthwise	D256	12.5	13.0	14.0	12.0
-crosswise		8.5	-	12.0	9.0
Compressive Strength (psi)	D695	65,000	50,000	65,000	63,000
Hardness, Rockwell M	D785	M115	M105	M110	M112
THERMAL					
Coeff. of Linear Thermal Expansion					
(x 10 ⁻⁵ in./in./°F)					
-lengthwise	D696	0.83	0.72	0.55	0.72
-crosswise		1.00	0.90	0.66	0.83
Max Operating Temp (°F / °C)	-	285 / 140	430 / 220	284 / 140	329 / 165
Thermal Conductivity					
(BTU-in/ft ² -hr-°F)	C177	2.0	2.0	2.0	2.0
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		7.0	7.0	7.0	7.0
Flammability Rating	UL94	V-0	H-B	H-B	H-B
ELECTRICAL					
Dielectric Strength (V/mil)					
short time, 1/8" thick	D149	300	350	800	900
Dielectric Constant at 1 MHz	D150	6.3	4.5	5.0	4.5
Dissipation Factor at 1 MHz	D150	0.019	0.018	0.019	0.020
Arc Resistance (sec)	D495	180	240	100	120

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Kel-F[®] PCTFE

(PolyChloroTriFluoroEthylene)

 CHARACTERISTICS: High optical transparency Chemical resistance, near zero 	Kel-F [®] PCTFE General Properties	ASTM or UL Test	Typical Values
moisture absorption	PHYSICAL		
Excellent electrical properties	Specific Gravity (g/cm ³)	D792	2.13
• Temperature range of -400°F to	Water Absorption, 24 hrs (%)	D570	< 0.01
+400°F (-240°C to +204°C).	((aut 11000) public, 2 + int (10)	2010	
• PCTFE also has extremely low	MECHANICAL		
outgassing (0.01% TML, 0.00%	Tensile Strength (psi)	D638	5,300
CVCM, 0.00% WVR when tested per	Tensile Modulus (psi)	D638	207,000
ASTM E-595-90), so it is suitable for	Tensile Elongation at Break (%)	D638	150
use in aerospace and flight applications.	Flexural Strength (psi)	D790	8,500
applications.	Flexural Modulus (psi)	D790	180,000
APPLICATIONS:	Compressive Strength (psi)	D695	5,500
	Compressive Modulus (psi)	D695	180,000
• Valves - seats, stems, seals	Hardness, Shore D	D785	D90
• Seals - lips, o-rings, v-rings, special construction seals	IZOD Notched Impact (ft-lb/in)	D256	5
• Compressors & pumps			
• Films - food packaging,	THERMAL		
pharmaceutical packaging, optical	Coefficient of Linear Thermal Expansion		
recording, electroluminescent display	(x 10 ⁻⁵ in./in./°F)	D696	7.0
panels	Heat Deflection Temp (°F / °C) at 264 psi	D648	167 / 75
• Gaskets - pressure, diaphragm, liquid	Melting Temp (°F / °C)	D3418	415 / 212
gauge seals, fluid handling	Max Operating Temp (°F / °C)	-	400 / 204
Bearings - sleeve & thrust	Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	1.45
	$(x \ 10^{-4} \ cal/cm-sec^{\circ}C)$		4.99
MATERIAL AVAILABILITY:	Flammability Rating	UL94	V-0
Rod: 1/8" to 3.25"			
Sheet: 1/16" to 2"	ELECTRICAL		
	Dielectric Strength (V/mil)		
GRADES / COLOURS:	short time, 1/8" thick	D149	500
Kel-F [®] : Off-White	Dielectric Constant at 1 MHz	D150	-
	Dissipation Factor at 1 MHz	D150	-
	Volume Resistivity (ohm-cm) at 50% RH	D257	10 ¹⁸

Kel-F[®] PCTFE is the registered trademark of 3M Company. Neoflon[®] is the registered trademark of Daikin Industries.

Ketron[®] PEEK 1000

Polyetheretherketone, unfilled, extruded

CHARACTERISTICS:Chemically resistant structural and bearing & wear material for	Ketron [®] PEEK 1000 General Properties	ASTM or UL Test	Typical Values
 continuous use to 480°F / 250°C Excellent chemical resistance Very low moisture absorption Inherently good wear and abrasion resistance Unaffected by continous exposure to hot water or steam FDA & USDA compliant APPLICATIONS: Automotive, marine, nuclear, oil well, electronics, medical and aerospace fields MATERIAL AVAILABILITY: Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4" GRADES / COLOURS: Ketron [®] PEEK 1000: Brownish Grey / Black	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10⁻¹⁰in³-min/lb-ft-hr THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft²-°F 	D792 D570 D638 D638 D638 D790 D790 D790 D790 D732 D695 D695 D785 D785 D785 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007 PTM55007 PTM55007	$\begin{array}{c} 1.31\\ 0.1\\ \\ 16,000\\ 500,000\\ 20\\ 25,000\\ 600,000\\ 8,000\\ 20,000\\ 500,000\\ 100\\ 126\\ 85\\ 1\\ \\ 0.4\\ 8,500\\ 375\\ \\ 0.26\\ 320\\ 644\\ 480\\ 1.8\\ \end{array}$
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	480 1E+13 3.3 0.003

Ketron[®] PEEK 1000 is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK (CM)

Polyetheretherketone, unfilled, compression molded

CHARACTERISTICS:	Ketron [®] PEEK (CM)	ASTM or	Typical
 Chemically resistant structural and 	General Properties	UL Test	Values
bearing & wear material for			vuites
continuous use to 480°F / 250°C	PHYSICAL		
 Excellent chemical resistance 	Specific Gravity (g/cm^3)	D792	1.32
• Very low moisture absorption	Water Absorption Immersion, 24 hr., %	D570	0.15
• Inherently good wear and abrasion	Water Ausorption miniersion, 24 m., 70	0570	0.15
resistance	MECHANICAL		
• Unaffected by continous exposure to	Tensile Strength, psi	D638	15,000
hot water or steam	Tensile Modulus, psi	D638	450,000
	Elongation, %	D638	10
APPLICATIONS:	Flexural Strength, psi	D790	25,000
• Automotive, marine, nuclear, oil well,	Flexural Modulus, psi	D790	600,000
electronics, medical and aerospace	Compressive Strength, psi	D695	17,000
fields	Compressive Modulus, psi	D695	450,000
NAMEDIAL ANALLADILITY.	Hardness, Rockwell M	D785	99
MATERIAL AVAILABILITY:	Hardness, Rockwell R	D785	126
Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4"	Hardness, Durometer, Shore D Scale	D2240	85
Sneet: 1/4 to 4	Izod Impact (Notched), ft-lb/in	D256	1
GRADES / COLOURS:	Coefficient of Friction, Dynamic	Dry vs. Steel,	
		PTM55007	0.4
Ketron [®] Peek (CM): Brownish Grey / Black	Limiting PV, psi-fpm	PTM55007	12,500
/ Black	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	350
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.26
	Deflection Temperature 264 psi, °F	D648	320
	Melting Point (Crystalline) Peak, °F	D3418	644
	Continuous Service in Air (Max), °F	Without Load	480
	Thermal Conductivity, BTU-in/hr-ft ² -°F		1.75
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	480
	Surface Resistance, Ohm/Sq	Lower Limit;	
		EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	3.3
	Dissipation Factor, 1 MHz	D150(2)	0.003

Ketron[®] PEEK (CM) is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK 30% GF

Polyetheretherketone, 30% glass reinforced, extruded

CHARACTERISTICS:Chemically resistant structural and bearing & wear material for	Ketron [®] PEEK 30% GF General Properties	ASTM or UL Test	Typical Values
 continuous use to 480°F / 250°C Excellent chemical resistance Very low moisture absorption Inherently good wear and abrasion resistance Unaffected by continous exposure to hot water or steam 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi	D792 D570 D638 D638	1.51 0.1 15,000 900,000
 APPLICATIONS: Automotive, marine, nuclear, oil well, electronics, medical and aerospace fields MATERIAL AVAILABILITY: Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4" GRADES / COLOURS: Ketron[®] Peek 30% GF: Brownish Grey 	Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in	D638 D790 D790 D732 D695 D695 D785 D785 D785 D2240 D256	3 28,000 1,000,000 14,000 26,000 1,000,000 103 126 86 1.4
	Coeff.of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square	E831 (TMA) D648 D3418 Without Load D149(2) Lower Limit; EOS/ESD S11.11	0.12 450 644 480 2.98 500 1E+13

Ketron[®] PEEK 30% GF is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK 30% GF (CM)

Polyetheretherketone, 30% glass reinforced, compression molded

CHARACTERISTICS:Chemically resistant structural and bearing & wear material for	Ketron [®] PEEK 30% GF (CM) General Properties	ASTM or UL Test	Typical Values
 continuous use to 480°F / 250°C Excellent chemical resistance Very low moisture absorption Inherently good wear and abrasion resistance Unaffected by continous exposure to 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL	D792 D570	1.51 0.15
hot water or steam	Tensile Strength, psi Tensile Modulus, psi	D638 D638	17,000 750,000
 APPLICATIONS: Automotive, marine, nuclear, oil well, electronics, medical and aerospace fields 	Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi	D638 D790 D790 D695 D695	3 28,000 1,000,000 19,000 500,000
MATERIAL AVAILABILITY: Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4"	Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in	D785 D785 D2240 D256	103 124 86 1.4
GRADES / COLOURS: Ketron [®] Peek 30% GF (CM): Brownish Grey	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.14 450 644 480 2.98
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Sq	D149(2) Lower Limit; EOS/ESD S11.11	550 1E+13

Ketron[®] PEEK 30% GF (CM) is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK 30% CF

Polyetheretherketone, 30% carbon fiber reinforced, extruded

CHARACTERISTICS:Chemically resistant structural and bearing & wear material for	Ketron [®] PEEK 30% CF General Properties	ASTM or UL Test	Typical Values
 continuous use to 480°F / 250°C Excellent chemical resistance Very low moisture absorption Inherently good wear and abrasion resistance Unaffected by continous exposure to hot water or steam 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi 	D792 D570 D638	1.41 0.06 19,000
 APPLICATIONS: Automotive, marine, nuclear, oil well, electronics, medical and aerospace fields MATERIAL AVAILABILITY: Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4" GRADES / COLOURS: 	Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Hardness, Rockwell M Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D638 D638 D790 D790 D695 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007	$ \begin{array}{r} 1,100,000\\5\\25,750\\1,250,000\\29,000\\102\\93\\1\\0.2\\25,000\\150\end{array} $
Ketron [®] Peek 30% CF: Black	k (wear) factor, 10 ⁻¹⁰ in ⁻¹ -min/lb-ft-hr THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square	PTM55007 E831 (TMA) D648 D3418 D3418 Without Load D149(2) Upper Limit; EOS/ESD S11.11	150 0.1 518 644 289 482 6.4 32 100,000

Ketron[®] PEEK 30% CF is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK 30% CF (CM)

Polyetheretherketone, 30% carbon fiber reinforced, compression molded

CHARACTERISTICS:	Ketron [®] PEEK 30% CF (CM)	ASTM or	Typical
• Chemically resistant structural and bearing & wear material for	General Properties	UL Test	Values
continuous use to 480°F / 250°C			
 Excellent chemical resistance 	PHYSICAL		
Very low moisture absorption	Specific Gravity (g/cm ³)	D792	1.42
• Inherently good wear and abrasion	Water Absorption Immersion, 24 hr., %	D570	0.15
resistance			
• Unaffected by continous exposure to	MECHANICAL		
hot water or steam	Tensile Strength, psi	D638	18,000
	Tensile Modulus, psi	D638	800,000
APPLICATIONS:	Elongation, %	D638	2
• Automotive, marine, nuclear, oil well,	Flexural Strength, psi	D790	30,000
electronics, medical and aerospace	Flexural Modulus, psi	D790	1,300,000
fields	Compressive Strength, psi	D695	25,000
	Compressive Modulus, psi	D695	550,000
MATERIAL AVAILABILITY:	Hardness, Rockwell M Hardness, Rockwell R	D785 D785	97 125
Rod: 3/16" to 4 3/4"	Hardness, Rockwell K Hardness, Durometer, Shore D Scale	D785 D2240	86
Sheet: 1/4" to 4"	Izod Impact (Notched), ft-lb/in	D2240 D256	1.4
	Coefficient of Friction, Dynamic	Dry vs. Steel,	1.4
GRADES / COLOURS:	Coefficient of Priction, Dynamic	PTM55007	0.24
Ketron [®] Peek 30% CF (CM): Black	Limiting PV, psi-fpm	PTM55007	41,000
	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	160
		1 11133007	100
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.17
	Deflection Temperature 264 psi, °F	D648	450
	Melting Point (Crystalline) Peak, °F	D3418	644
	Continuous Service in Air (Max), °F	Without Load	480
	Thermal Conductivity, BTU-in/hr-ft ² -°F		6.37
	ELECTRICAL		
	Surface Resistance, Ohm/Sq	Upper Limit;	
		EOS/ESD S11.11	100,000

Ketron[®] PEEK 30% CF (CM) is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Ketron[®] PEEK-HPV

Polyetheretherketone; PTFE, Graphite, and Carbon Fiber Filled Bearing Grade

 CHARACTERISTICS: Chemically resistant structural and bearing & wear material for 	Ketron [®] PEEK-HPV General Properties	ASTM or UL Test	Typical Values
continuous use to 480°F / 250°C	PHYSICAL		
 Excellent chemical resistance 	Specific Gravity (g/cm ³)	D792	1.44
 Very low moisture absorption 		D792 D570	0.05
• Inherently good wear and abrasion resistance	Water Absorption Immersion, 24 hr., %	D370	0.03
• Unaffected by continous exposure to	MECHANICAL		
hot water or steam	Tensile Strength, psi	D638	11,000
• Suited for bearing	Tensile Modulus, psi	D638	850,000
• High pressure - velocity capabilities	Elongation, %	D638	2
8 I 9 I	Flexural Strength, psi	D790	27,500
APPLICATIONS:	Flexural Modulus, psi	D790	1,100,000
• Automotive, marine, nuclear, oil well,	Compressive Strength, psi	D695	26,700
electronics, medical and aerospace	Compressive Modulus, psi	D695	1,000,000
fields	Hardness, Rockwell M	D785	85
Tierds	Izod Impact (Notched), ft-lb/in	D256	0.7
MATERIAL AVAILABILITY:	Coefficient of Friction, Dynamic	Dry vs. Steel,	
Rod: 3/16" to 4 3/4"		PTM55007	0.21
Sheet: $1/4$ " to 4"	Limiting PV, psi-fpm	PTM55007	35,000
Sheet. 1/4 to 4	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	100
GRADES / COLOURS:	THERMAL		
Ketron [®] PEEK-HPV	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.17
CF+PTFE+Graphite: Black	Deflection Temperature 264 psi, °F	D648	383
	Melting Point (Crystalline) Peak, °F	D048 D3418	644
	Tg-Glass Transition (Amorphous), °F	D3418	289
	Continuous Service in Air (Max), °F	Without Load	482
	Thermal Conductivity, BTU-in/hr-ft ² -°F	Without Load	1.7
	ELECTRICAL		
	Surface Resistance, Ohm/Sq	EOS/ESD S11.11	10,000

Ketron[®] PEEK-HPV is the registered trademark of Quadrant Engineering Plastics. PEEK is the registered trademark of Victrex plc.

Kynar[®] PVDF (PolyVinyliDene Fluoride)

CHARACTERISTICS:Excellent corrosion and chemical resistance	Kynar [®] PVDF General Properties	ASTM or UL Test	Typical Values
 Applications up to 300°F (149°C) Used extensively in chemical processing Easily fabricated into finished parts. 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption, 24 hrs (%)	D792 D570	1.77 0.03
 Good thermal stability High tensile strength Extremely high purity FDA, USDA, USP XX Class VI, 3A sanitary standards 	MECHANICAL Tensile Strength (psi) Tensile Modulus (psi) Tensile Elongation at Break (%) Flexural Strength (psi)	D638 D638 D638 D790	6,300 290,000 50 9,700
 APPLICATIONS: Tanks & Process Equipment Tank Linings Pump & Valve Components Pipe Flanges & Spacers Components for Wet Process Stations 	Flexural Modulus (psi) Compressive Strength (psi) Compressive Modulus (psi) Hardness, Shore IZOD Notched Impact (ft-lb/in)	D790 D695 D695 D2240 D256	290,000 9,000 - D75 3.0
 Food Trays for High Heat Applications 	THERMAL Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)	D696	6.6
MATERIAL AVAILABILITY: Rod: 1/8" to 12" Sheet: 0.030" to 4" Film: 0.002" to 0.029"	Heat Deflection Temp (°F / °C) at 264 psi Melting Temp (°F / °C) Max Operating Temp (°F / °C) Thermal Conductivity (BTU-in/ft ² -hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C)	D648 D3418 C177	230 / 110 332 / 166 275 / 130 1.2 4.1
GRADES / COLOURS: Kynar [®] : Off White (Natural)	Flammability Rating ELECTRICAL	UL94	V-O
	Dielectric Strength (V/mil) short time, 1/8" thick Dielectric Constant at 1 MHz Dissipation Factor at 1 MHz Volume Resistivity (ohm-cm)at 50% RH	D149 D150 D150 D257	1,700 8.5 0.05 1.5 x 10 ¹⁵

Kynar[®] PVDF is the registered trademark of Elf Atochem North America.

Kynar[®] PVDF CN-F & CN-P

(Static-Control)

CHARACTERISTICS:

- Excellent corrosion and chemical resistance
- Temperature up to 300°F (149°C)
- Tough and durable
- Easily fabricated into finished parts
- Anti-Static (SD) : Resistivity between 107 and 1012 ohms per square.
- **Conductive (CN) :** Resistivity between 103 and 106 ohms per square.

APPLICATIONS:

- Semi-conductors equipment manufacturer
- Electronic & electrical industry
- Communications equipment
- Rotary seal rings
- Wafer guides & carriers

MATERIAL AVAILABILITY:

Sheet: 1/4" to 2"

GRADES / COLOURS:

PVDF CN-F: Black PVDF CN-P: Black

Kynar [®] PVDF CN-F & CN-P General Properties	ASTM or UL Test	Typica PVDF CN-F Carbon Fiber	l Values PVDF CN-P Carbon Powder
		Carbon Fiber	Carbon Powder
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.77	1.74
Water Absorption, 24 hrs (%)	D570	No Data	< 0.06
MECHANICAL			
Tensile Strength (psi)	D638	20,500	5,200
Tensile Modulus (psi)	D638		200,000
Tensile Elongation at Yield (%)	D638	5	15
Flexural Strength (psi)	D790	26,500	6,500
Flexural Modulus (psi)	D790	1,240,000	135,000
Compressive Strength (psi)	D695	_	_
Compressive Modulus (psi)	D695	_	_
Hardness, Rockwell	D785	_	_
IZOD Notched Impact (ft-lb/in)	D256	1.7	No Break
THERMAL			
Coeff. of Linear Thermal Expansion			
(x 10 ⁻⁵ in./in./°F)	D696	-	-
Heat Deflection Temp (°F / °C) at 264 psi	D648	335 / 168	135 / 57
Melting Temp (°F / °C)	D3418	_	_
Max Operating Temp (°F / °C)	_	_	_
Thermal Conductivity(BTU-in/ft ² -hr-°F)			
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$	C177	_	_
Flammability Rating	UL94	-	_
ELECTRICAL			
Dielectric Strength (V/mil)			
short time, 1/8" thick	D149	-	_
Dielectric Constant at 1 KHz	D150	-	-
Dissipation Factor at 1 KHz	D150	-	-
Surface Resistivity (ohms/sq)	D257	$10^{2}-10^{6}$	< 10 ⁵
Volume Resistivity (ohm-cm), Dry	D257	$10^{2}-10^{6}$	< 10 ⁵

Kynar[®] PVDF CN-F & CN-P is the registered trademark of Elf Atochem North America.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Lexan®

Polycarbonate, unfilled, machine grade, extruded

CHARACTERISTICS:	Lexan [®] Polycarbonate	ASTM or	Typical
Superior impact strengthOutstanding mechanical strength and	General Properties	UL Test	Values
Outstanding mechanical strength and stiffness			
 Excellent dimensional stability 	PHYSICAL		
Good electrical properties	Specific Gravity (g/cm ³)	D792	1.2
• Transparency	Water Absorption Immersion, 24 hr., %	D570	0.2
Good machinability			
	MECHANICAL		
APPLICATIONS:	Tensile Strength, psi	D638	10,500
Gears, rollers, internal mechanical	Tensile Modulus, psi	D638	320,000
parts, connectors.	Elongation, %	D638	100
• The automotive industry	Flexural Strength, psi	D790	13,000
• Pumps, valve	Flexural Modulus, psi Shear Strength, psi	D790 D732	350,000 9,200
Instrument panels	Compressive Strength, psi	D732 D695	9,200 11,500
	Compressive Strength, psi	D695	300,000
MATERIAL AVAILABILITY:	Hardness, Rockwell M	D785	75
Rod: 3/16" to 5"	Hardness, Rockwell R	D785	126
Sheet: 1/4" to 4"	Hardness, Durometer, Shore D Scale	D2240	80
	Izod Impact (Notched), ft-lb/in	D256	1.5
GRADES / COLOURS:	Limiting PV, psi-fpm	PTM55007	1,000
Lexan [®] : Tranlucent Clear			
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.39
	Deflection Temperature 264 psi, °F	D648	290
	Tg-Glass Transition (Amorphous), °F	D3418	293
	Continuous Service in Air (Max), °F	Without Load	250
	Thermal Conductivity, BTU-in/hr-ft ² -°F		1.3
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	400
	Surface Resistance, Ohm/Sq	Lower Limit;	
		EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	3.17
	Dissipation Factor, 1 MHz	D150(2)	0.0009

Lexan[®] is the registered trademark of General Electric Company

Lexan[®] 104

Polycarbonate Static Control

CHARACTERISTICS:

- Tough
- Good electrical insulation
- · Easily machined and polished
- Easily welded and bonded

APPLICATIONS:

- Mechanical engineering
- Medical technology
- Electrical engineering
- Transport and conveyor technology
- Automotive engineering
- Precision engineering
- Domestic appliance
- Electronic industry

MATERIAL AVAILABILITY:

Rod:	6mm to 150mm
Sheet:	5mm to 80mm

GRADES / COLOURS:

Lexan® 104 Polycarbonate: Black

Lexan [®] 104 Polycarbonate General Properties	ASTM or UL Test	Typical Values
PHYSICAL		
Density lb/in ³	D792	0.0434
Water Absorption 24 hrs @ 73F %	D570	0.15
MECHANICAL		
Hardness, Rockwell M	D785	70
Hardness, Rockwell R	D785	118
Tensile Strength @ Break Type I, 2.0 in/min, psi	D638	10,000
Tensile Strength @ Yield Type I, 2.0 in/min, psi	D638	9,000
Elongation at Break Type I, 2.0 in/min, %	D638	135
Elongation at Yield Type I, 2.0 in/min, %	D638	7
Flexural Modulus 0.05 in/min, 2" span, ksi	D790	340
Flexural Yield Strength 0.05 in/min, 2" span, psi	D790	14,200
Fatigue Strength Fatigue Limit, 2.5 MM cycles, psi	D671	1,000
Izod Impact, Unnotched 73F, ft-lb/in	D4812	60
Tensile Impact Strength Type "S", ft-lb/in ²	D1822	300
Falling Dart Impact 73F, ft-lb	D3029	125
Taber Abrasion, mg/1000 Cycles CS-17, 1 kg	D1044	10
Izod Impact, Notched 73F, ft-lb/in	D256	17
THERMAL		
CTE, linear 68°F Flow, -40F to 200F, µin/in-°F	E831	38
Heat Capacity, BTU/Ib-°F	C351	0.3
Thermal Conductivity, BTU-in/hr-ft ² -°F	C177	1.32
Deflection Temperature at 0.46 MPa	0177	1.52
(66 psi) 0.250", unannealed	D648	280 °F
Deflection Temperature at 1.8 MPa	Doito	200 1
(264 psi) 0.250", unannealed, °F	D648	270
Vicat Softening Point Rate B, °F	D1525	310
UL RTI, Electrical, °F	UL 746B	266
UL RTI, Mechanical with Impact, °F	UL 746B	266
UL RTI, Mechanical without Impact, °F	UL 746B	266
Flammability, UL94	Tested Thickness	-00
	= 0.058 in.	HB
ELECTRICAL Volume Resistivity, ohm-cm	D257	Min 1e+017
Dielectric Constant 1 MHz	D257 D150	2.96
Dielectric Constant 60 Hz	D150 D150	3.17
Dielectric Strength in air, 125 mils, V/mil	D130 D149	380
Dissipation Factor 60 Hz	D149 D150	0.0009
Dissipation Factor 1 MHz	D150	0.000
Comparative Tracking Index	D150	0.01
(+/- 0.125"); PLC Code 2	UL 746A	250 – 400 V
Hot Wire Ignition, HWI (+/- 0.125"); PLC Code 2;	UL 746A	30 - 60 sec
High Amp Arc Ignition, HAI Surface	01/10/1	50 00 500
(+/- 0.125"); PLC Code 1;	UL 746A	60 – 120 arcs
High Voltage Arc-Tracking Rate, HVTR	01/10/1	00 120 ares
(+/- 0.125"); PLC Code 2;	UL 746A	1 – 3.15 in/min
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	227.011	

Lexan[®] 104 is the registered trademark of General Electric Company

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Lexan[®] 9034 Sheet

CHARACTERISTICS:

Virtually unbreakable

- Excellent light transmission
- Energy efficiency
- Surface protected with UltraMask, a new non-adhesive polyethylene masking for improved installation and clean-up

APPLICATIONS:

- Windows and windbreaks
- Doors and storm doors
- Equipment enclosures
- Store fixtures and displays

MATERIAL AVAILABILITY:

Sheet: 0.118" to 0.500"

GRADES / COLOURS:

Lexan [®] 9034:	Clear, Grey, Bronze
--------------------------	---------------------

Lexan [®] 9034 Sheet General Properties	ASTM or UL Test	Typical Values
General i roperties	UL lest	values
PHYSICAL		
Specific Gravity, g/cm ³	D792	1.20
Refractive Index @ 77°F	D542A	1.586
Light Transmission (Average), 1/8" disk, %	D1003	88
Rockwell Hardness	D785	M70
Abrasion Resistance, Taber Abrader,	2,00	
CS-17 wheel, mg/1,000 cycles	D1044	10
Water Absorption Equilibrium, 24 hr., %	D570	0.15
@ 73°F	2570	0.35
@ 212°F		0.58
MECHANICAL		
Tensile Strength @ Yield, psi	D638	9,000
Ultimate, psi	D050	9,500
Tensile Modulus, psi	D638	345,000
Flexural Strength, psi	D038 D790	13,500
Flexural Modulus, psi	D790	345,000
Flexural Endurance @ 1,800 Cycles/min,	D790	545,000
73°F, 50% RH, psi	D671	1,000
Compressive Strength, psi	D671 D695	
		12,500
Compressive Modulus, psi	D695	345,000
Elongation, % Poisson's Ratio	D638	110 0.37
	-	
Izod Impact Strength, Notched, 1/8", ft-lbs/in	D256A	12 - 16
Unnotched, 1/8"	A OTEN (1922	60 (no failure)
Tensile Impact Strength, S-Type Specimen, ft-lbs/in ²	ASTM 1822	225 - 300
Shear Strength, @ Yield, psi	D732	6,000
Ultimate, psi	D722	10,000
Shear Modulus, psi	D732	114,000
Deformation Under Load @ 4,000 psi, %	D621	0.2
@ 73°F		0.2
@ 158°F		0.3
THERMAL		
Coeff. of Thermal Expansion, in./in/°F	D696	3.75 x 10 ⁻⁵
Coeff. of Thermal Conductivity, Btu•in/hf•ft ² •°F	C177	1.35
Specific Heat @ 40°C, cal/gm/°C		0.30
Heat Deflection Temperature, @ 264 psi, °F	D648	270
@_66 psi, °F		280
Maximum Service Temperature °F		
Short-Term, no Load	-	250
Continuous	-	180
Brittle Temperature	D746	-211
ELECTRICAL		
Dielectric Constant @ 10 Hz	D150	2.96
@ 60 Hz		3.17
Volume Resistivity, ohm-cm	D257	8.2 x 10 ¹⁶
Power Factor @ 60 Hz	D150	0.0009
@ 1,000,000 Hz		0.010
Arc Resistance, Stainless Steel Strip Electrodes	D495	10 - 11
Tungsten Electrodes		120
FLAMMABILITY		
Horizontal Burn (Flame Spread) AEB, in	D635	< 1
~_~~~,		

Lexan® 9034 is the registered trademark of General Electric Company

Lexan[®] XL10 Sheet

CHARACTERISTICS:

•	UV-protected surface
•	10-year warranty against breakage
	yellowing and loss of light
	transmission

- Surface protected with UltraMask, a new non-adhesive polyethylene masking for improved installation and clean-up
- Virtually unbreakable
- Energy efficiency

APPLICATIONS:

- Sloped and vertical glazing
- Skylights and barrel vaults
- Covered walkways and canopies
- Sound barriers

MATERIAL AVAILABILITY:

Sheet: 0.118" to 0.500"

GRADES / COLOURS:

Lexan[®] XL10: Clear, Tinted Bronze Light Green

Lexan [®] XL10 Sheet General Properties	ASTM or UL Test	Typical Values
PHYSICAL		
Specific Gravity, g/cm ³	D792	1.20
Sound Transmission, STC Rating (36" x 84")	E9070	
@ 0.118"		25
@ 0.177"		29
@ 0.236"		31
@ 0.375"		34
@ 0.500"		34
Light Transmission (Average), %	D1003	88
Rockwell Hardness	D785	M70, R118
Chemical Resistance	ANSI Z26.1	Passes
MECHANICAL		
Tensile Strength Ultimate, psi	D638	9,500
Tensile Modulus, psi	D638	340,000
Flexural Strength, psi	D790	13,500
Flexural Modulus, psi	D790	340,000
Flexural Endurance @ 1,800 Cycles/min,		
73°F, 50% RH, psi	D671	1,000
Compressive Strength, psi	D695	12,500
Elongation, %	D638	110
Izod Impact Strength, up to 125 mils		
Notched, ft-lbs/in	D256A	12 – 16
Drop Dart Impact Strength, 1" dia. dart, ft-lbs	GE Test	
@ 73°F		> 200
@ 0°F		> 200
THERMAL		
Coeff. of Thermal Expansion, in./in/°F	D696	3.75 x 10 ⁻⁵
Thermal Shrinkage, %	GE Test	1
Heat Deflection Temperature, @ 264 psi, °F	D648	270
@ 66 psi, °F		280
Maximum Service Temperature °F		
Short-Term, no Load	-	250
Continuous	-	180
Shading Coefficient	ASHRAE	
Clear		1.02
Grey / Bronze		0.79
FLAMMABILITY		
Horizontal Burn (Flame Spread) AEB, in	D635	< 1
Ignition Temperature, °F	D1929	
Flash		873
Self		1.076

Lexan[®] XL10 is the registered trademark of General Electric Company

Lexan Thermoclear[®] Sheet LTC 2R10

CHARACTERISTICS:

- Twin wall rectangular structure
- Fit for vertical and curved applications
- High impact strength
- Excellent light transmission
- Light weight, easy installation
- Long-term weather resistance
- Outstanding thermal insulation properties
- 10-year warranty against yellowing, loss of light transmission and hail damage
- Meet international building code, BOCA, ICBO, and SBCCI

APPLICATIONS:

- Flat glazing systems
- Two side clamped, glazing bars parallel with rib structure
- Curved glazing systems
- Covered walkways and canopies
- Skylights

MATERIAL AVAILABILITY:

Sheet: 6mm & 10mm Width: 48", 72", 83" Length: 36" – 50ft

GRADES / COLOURS:

Lexan There	noclear®
LTC 2R10:	Clear, Bronze and
	Greenish Blue

Lexan Thermoclear [®] Sheet LTC 2R10 General Properties	ASTM or UL Test	Typical Values
PHYSICAL		
Specific Gravity g/cm ³	D792	1.20
Thickness, inches	_	0.395
Weigth	_	0.41
Light Transmission @ 90°, %	D1925	
Clear		80
Bronze		50
Opal		40
White		20
Green		66
Refractive Index	D542	1.586
Chemical Resistance	ANSI Z26.1	Passes
Cold Forming, Minimum Bend Radius, inches		69
MECHANICAL		
Elongation, @ Yield, %	D638	6 – 8
Ultimate, %		110
Shear Modulus, psi	D732	114,000
Gardner Impact Strength, 1/4" radius dart, ft-lbs	Gardner	23
THERMAL		
Coeff. of Thermal Expansion, in/in,°F	D696	3.75 x 10 ⁻⁵
Thermal Conductivity, Btu/hr,ft ² ,°F	C177	1.35
Heat Deflection Temperature @ 66 psi, °F	D648	275
Maximum Service Temperature °F		
Short-Term, no Load	_	250
Continuous	_	180
U-Factor/R-Factor, Btu/hr,ft ² ,°F	D236	0.52/1.92
Shading Coefficient	ASHRAE	
Clear		0.98
Bronze		0.78
Opal		0.70
White		0.53
Green		0.89
Solar Transmission, %	ASHRAE	
Clear		85
Bronze		60
Opal		50
White		30
Green		73

Lexan Thermoclear[®] Sheet LTC 2R10 is the registered trademark of General Electric Company

Macor[®] (Machinable Glass Ceramic)

CHARACTERISTICS:Continuous use temperature of 800°CExhibits zero porosity	Macor [®] General Properties	ASTM or UL Test	Typical Values
 Excellent insulator at high voltages, various frequencies and high temperatures Won't outgas in vacuum environments 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption, 24 hrs (%)	D792 D570	2.52 0.01
 Machined to a surface finish of less than 20 μin. 	MECHANICAL Compressive Strength (psi) Flexural Strength (psi)	D695 D790	50,000 13,600
 APPLICATIONS: Ultra high vacuum environments Microwave spacers Aerospace industry - retaining rings, 	Modulus of Elasticity (psi) Shear Modulus (psi) Poisson's Ratio Hardness, Rockwell	_ _ _ D785	9,700,000 3,700,000 0.29 A48
radiation detectorsWelding nozzlesFixtures, electrodes, burner blocks	THERMAL Coeff. of Linear Thermal Expansion (x 10 ⁻⁶ in./in./°F)	D696	5.20
MATERIAL AVAILABILITY: Rod: 1/4" to 2" Sheet: 1/4" to 2"	Heat Deflection Temp (°F / °C) at 264 psi Melting Temperature (°F / °C) Max Operating Temp (°F / °C) Thermal Conductivity (BTU-in/ft ² -hr-°F)	D648 D3418 - C177	240 / 116 none 1,832 / 1,000 10.16
GRADES / COLOURS: Macor [®] : White	(x 10 ⁻⁴ cal/cm-sec-°C) Flammability Rating ELECTRICAL	UL94	34.9 none
	Dielectric Strength (V/mil) short time, 1/8" thick Dielectric Constant at 1 KHz Dissipation Factor at 60 Hz Volume Resistivity (ohm-cm) at 50% RH	D149 D150 D150 D257	1,000 6.03 - > 10 ¹⁶

Macor[®] is the registered trademark of Corning Inc.

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

MC Nylon 501CD-R2/R6

ESD (Conductive)

CHARACTERISTICS:

Volume Coundctivity:

MC501CDR2 = $1 \cdot 10^2 \Omega \cdot m(10^2 \cdot 10^4 \Omega \cdot cm)$ MC501CDR6 = $10^4 \cdot 10^6 \Omega \cdot m(10^6 \cdot 10^8 \Omega \cdot cm)$

- Protecting electronice components from static damage
- Preventing dust from sticking due to static electricity
- Preventing unwanted materials from entering machinery due to static electricity
- Preventing sparks from static electricity

APPLICATIONS:

- IC parts
- Conveyance & Storage parts - magazine
- tray
- Clean Room
- wheel
- roller - guide
- Print
 - guide

MATERIAL AVAILABILITY:

Rod: 10mm to 150mm Sheet: 5mm to 30mm

GRADES / COLOURS:

MC 501 CD/R2: Black MC 501 CD/R6: Black

MC Nylon 501CD-R2/R6 General Properties	ASTM or UL Test	Typical Values R2 R6	
General Properties	UL lest	N 2	KU
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.20	1.23
MECHANICAL			
Tensile Strength, MPa (kgf/cm ²)	D638	68 (700)	74 (760)
Elongation, %	D638	10	7
Flexural Strength, MPa (kgf/cm ²)	D790	117 (1,200)	117 (1,200)
Flexural Modulus of Elasticity, MPa (10 ³ kgf/cm ²)	D790	4,110 (42)	4,020 (41)
Izod Impact, (Notched) J/m (kgf-cm/2.54cm)	D256	35 (9)	35 (9)
Compressive Strength, MPa (kgf/cm ²)	D695	98 (1,000)	93 (950)
Compressive Modulus of Elasticity, MPa (10 ³ kgf/cm ²)	D695	4,210 (43)	4,020 (41)
Rockwell Hardness, R	D785	119	117
Rockwell Hardness, M	D785	86	82
THERMAL			
Deflection Temperature Under Load °C			
at 0.445 MPa (4.6kgf/cm ²)	D648	215	215
Deflection Temperature Under Load °C			
at 1.820 MPa (18.6kgf/cm ²)	D648	200	200
ELECTRICAL			
Surface Resistivity, (ohms/sq)	D 257	$10^2 - 10^4$	$10^{6} - 10^{8}$

MC Nylon 501 CD-R2/R6 is the registered trademark of Quaduant Engineering Plastics

Meldin[®] 2000

CHARACTERISTICS:

- MELDIN[®] 2000 materials exhibit superior tensile strength and elongation properties
- With an ultimate compressive strength of over 40,000 PSI and a usable limit of 34,000 PSI at 10% strain, MELDIN[®] 2001 provides the highest resistance
- MELDIN[®] 2000 materials have inherently high moduli and yield points in tension, compression, and flex.
- High PVs and high-static loading without concern for deflection
- Extremely low thermal expansion, high resistance to deformation under load
- Very high volume and surface resistivity
 MELDIN[®] 2000 exhibited remarkably low
- outgassing

- MELDIN[®] 2021, MELDIN[®] 2211, and MELDIN[®] 2030 bearing grades are all capable of carrying high loads
- High strength and resistance to compressive creep

APPLICATIONS:

- Motors, general industrial equipment or machinery and business machines
- · Chip nest and sockets
- High temperature electrical connectors
- Labyrinth seals
- Bearing cages
- Can mandrel
- SealsBushings

MATERIAL AVAILABILITY:

Rod: 1/4" to 2" Sheet: 1/4" to 2"

GRADES / COLOURS:

MELDIN [®] 2001:	Dark Green
MELDIN [®] 2021:	Black
MELDIN [®] 2030:	Black
MELDIN [®] 2211:	Black

Meldin [®] 2000 General Properties	ASTM or UL Test	MELDIN [®] 2001	MELDIN [®] 2021	MELDIN [®] 2030	MELDIN [®] 2211
MECHANICAL @ RTTensile Strength Ultimate, psi (MPa)Tensile Modulus, psi x10 ⁵ (GPa)Elongation Ultimate, %Flexural Strength Ultimate, psi (MPa)Flexural Modulus, psi x 10 ⁵ (GPa)Compressive Strength Ultimate, psi (MPa)Compressive Strength @ 10% Strain, psi (MPa)Compressive Modulus, psi x 10 ⁵ (GPa)Deformation @ 2,000 psi, 24 hrs mold direction, %Izod Impact Strength (notched), Ft-lb/in (J/m)	D638 D638 D638 D790 D790 D695 modified D695 modified D695 modified D621 D256	$\begin{array}{c} 13,500 \ (93) \\ 1.75 \ (1.2) \\ 8.0 \\ 21,000 \ (144.7) \\ 6.50 \ (4.4) \\ 40,000 \ (275.7) \\ 34,000 \ (234.4) \\ 4.00 \ (2.7) \\ 0.10 \\ 0.53 \ (28.3) \end{array}$	11,000 (75.8) 1.90 (1.3) 5.0 12,500 (86.1) 5.75 (3.9) 33,000 (227.5) 30,000 (206.8) 4.00 (2.7) 0.09 0.38 (20.3)	$\begin{array}{c} 4,000\ (27.5)\\ 0.90\ (0.6)\\ 4.0\\ 7,000\ (48.2)\\ 3.90\ (2.6)\\ 20,000\ (137.8)\\ 17,000\ (117.2)\\ 2.00\ (1.3)\\ 0.35\\ 0.34\ (18.2)\end{array}$	6,800 (46.8) 3.00 (2.0) 4.0 11,500 (79.2) 5.50 (3.8) - - 0.10 0.37 (19.8)
THERMAL Coefficient of Thermal Expansion, in/in/°F (m/m/°C) x 10 ⁻⁵ Thermal Conductivity, BTU in/hr ft ² °F (W/m°C)	E831-93 C518/C177	2.95 (5.3) 3.0 (0.43)	2.7 (4.9) 4.3 (0.62)	3.3 (5.9) 2.4 (0.35)	3.2 (5.8) 2.8 (0.40)
ELECTRICAL Volume Resistivity, Ohm/cm Surface Resistivity, Ohm Dielectric Constant 10 ² Hz Dielectric Constant 10 ⁶ Hz Dielectric Strength, V/mil (MV/m) Dissipation Factor 10 ² Hz Dissipation Factor 10 ⁴ Hz Dissipation Factor 10 ⁶ Hz	D257 D257 D150 D150 D150 D150 D149 D150 D150 D150	$ \begin{array}{r}10^{15}\\10^{16}\\3.40\\3.39\\3.35\\400\ (15.8)\\0.0016\\0.0030\\0.0039\end{array} $	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 12.65 \\ 12.41 \\ 11.92 \\ 200 \ (7.9) \\ 0.0067 \\ 0.0096 \\ 0.0190 \end{array}$	$10^{15} \\ 10^{15} \\ 3.03 \\ 3.02 \\ 2.98 \\ 500 (19.7) \\ 0.0012 \\ 0.0031 \\ 0.0049 \\ 0.0049 \\ 0.0049 \\ 0.0015 \\ 0.0049 \\ 0.0015 \\ 0.0015 \\ 0.00049 \\ 0.00049 \\ 0.00000 \\ 0.0000 \\ 0.000000 \\ 0.00000 \\ 0.00000 \\ 0.000000 \\ 0.00000 \\ 0.000000 \\ 0.00000$	$ \begin{array}{c} 10^{15}\\ 10^{15}\\ 5.56\\ 5.53\\ 5.47\\ -\\ 0.0019\\ 0.0028\\ 0.0035\\ \end{array} $
GENERAL Specific Gravity (g/cm ³) Hardness Shore D Water Absorption, %	D792 D2240 D570	1.39 92 0.13	1.48 90 0.13	1.57 80 0.62	1.53 85 0.18
OTHER Outgassing, % TML Outgassing, % CVCM Outgassing, % WVR 500°F (260°C) Tensile Strength Ultimate, psi (MPa) Tensile Modulus, psi x 10 ⁵ (GPa)	E595 E595 E595 D638 D638	1.63 0.01 1.04 7,000 (48.2) 1.25 (0.8)	1.38 0.00 0.69 5,600 (38.6) 1.50 (1.0)	1.25 0.00 1.15 2,000 (13.7) 0.90 (0.6)	1.19 0.02 0.5 3,200 (22) 1.05 (0.7)
Elongation Ultimate, % Compressive Strength Ultimate, psi (MPa) Compressive Strength Yield, psi (MPa) Compressive Strain Yield, % Compressive Modulus, psi x 10 ⁵ (GPa) 600°F (316°C)	D638 D695 modified D695 modified D695 modified D695 modified	7.0 29,500 (203.3) 11,000 (75.8) 7.0 1.75 (1.2)	$\begin{array}{c} 1.50 (1.0) \\ 3.5 \\ 14,500 (100) \\ 9,000 (62) \\ 7.0 \\ 1.90 (1.3) \end{array}$	2.8 8,000 (55.1) 5,500 (38) 7.0 0.80 (0.5)	1.03 (0.7) 3.0 - - - -
Tensile Strength Ultimate, psi (MPa) Tensile Modulus, psi x 10 ⁵ (GPa) Elongation Ultimate, % Compressive Strength Ultimate, psi (MPa) Compressive Strength Yield, psi (MPa) Compressive Strain Yield, % Compressive Modulus, psi x 10 ⁵ (GPa)	D638 D638 D638 D695 modified D695 modified D695 modified D695 modified	3,000 (20.6) 0.30 (0.2) 25 25,000 (172.3) 7,000 (48.2) 7.0 1.00 (0.6)	2,000 (13.7) 0.35 (0.2) 12 8,500 (58.6) 5,000 (34.4) 7.0 0.75 (0.5)	500 (3.4) 0.10 (0.06) 4.0 5,000 (34.4) 3,200 (22) 6.0 0.55 (0.3)	

Meldin[®] 2000 is the registered trademarks of Furon Co.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Meldin[®] 7000

CHARACTERISTICS:

SUPERFIX[®]

- MELDIN[®] 7000 series of materials exhibit extremely high geometric stability at elevated temperatures. Testing has shown MELDIN[®] 7000 to have less than 0.04% variation from its original dimensions after cycling from 73°F (22.77°C) to 500°F (260°C) over a 2 day period.
- The self-lubricating grades of MELDIN[®] 7000 do not melt when exposed to high load (P), or high speed (V) applications,
- Mechanical properties and high chemical resistance.
- Low coefficient of friction and high heat resistance.
- High purity, high resistance to solvents, oils, and other process chemicals, and high electrical insulative properties

APPLICATIONS:

- MELDIN[®] 7001 is a popular choice for structural parts in aerospace and other applications where metal replacement is desirable.
- Bearings, seals, and other lowwear applications.
- Aircraft airframe systems such as landing gear and fuselage components, as well as jet engine parts such as pads, bumpers, washers, seals, and bearings.
- Semi-conductor manufacturing

MATERIAL AVAILABILITY:

Rod: 1/4" to 2" Sheet: 1/4" to 2"

GRADES / COLOURS:

MELDIN[®] 7001: Black MELDIN[®] 7021: Black

A 7001 7021 MECHANICAL @ RT 7001 7021 Tensile Strength, psi (MPa) D638 10,500 (72.4) 9,100 (63) Elongation, % D638 8.0 3.00 (89.5) Flexural Strength, psi (MPa) D790 12,800 (88) 13,000 (89.5) Flexural Modulus, psi x 10 ⁵ (GPa) D790 3.65 (2.5) 4.5 (3.1) Compressive Modulus, psi x 10 ⁵ (GPa) D695 3,800 (26) 3,400 (23) Compressive Modulus, psi x 10 ⁵ (GPa) D695 4.0 (2.8) 3.0 (2.1) Coeff. of Thermal Expansion 73 - 500 °F (23 - 260 °C), in/in/°F (m/m'°C) x 10 ⁻⁵ E831 2.7 (4.86) 2.5 (4.5) Thermal Conductivity, BTU in/hr ft ² °F (W/m °C) F433 2.15 (0.31) - ELECTRICAL D150 3.18 - - Dielectric Constant 100 Hz D150 3.14 - Dielectric Constant 100 Hz D150 3.14 - Dielectric Constant 10 Hz D150 3.14 - Dielectric Constant 10 Hz D150 0.6<	Meldin [®] 7000	ASTM or	Typical Values	
Tensile Strength, psi (MPa)D63810,500 (72.4)9,100 (63)Elongation, %D6388.05.5Flexural Strength, psi (MPa)D79012,800 (88)13,000 (89.5)Compressive Stress @ 1% Strain, psi (MPa)D6953,800 (26)3,400 (23)Compressive Stress @ 10% Strain, psi (MPa)D69518,500 (127.5)15,300 (106)Compressive Modulus, psi x 10 ⁵ (GPa)D6954.0 (2.8)3.00 (2.1)Coeff. of Thermal Expansion73 - 500 °F (23 - 260 °C),1515,300 (106)73 - 500 °F (23 - 260 °C),in/in/°F (m/m°C) x 10^5E8312.7 (4.86)2.5 (4.5)Thermal Conductivity,BTU in/hr ft² °F (W/m °C)F4332.15 (0.31)-ELECTRICALDielectric Constant 100 HzD1503.18-Dielectric Constant 10 HzD1503.14-Dielectric Constant 1 MHzD1503.14-OTHERSpecific Gravity (g/cm³)D7921.341.42Hardness Rockwell ED78545-5536Water Absorption, 24 hours, %D5700.230.19Water Absorption, 48 hours, %D5700.250.23Coeff. of Friction @ 25,000 PV237020.270.12= 500 psi x 200 fpmD37020.270.12High Temperature Dimensional StabilityM07020.270.12Water Absorption, %D5700.6385,500 (38)4,700 (32)ESO0 SF (260°C)Tensile Strength, psi (MPa)D638<	General Properties	UL Test	MELDIN [®] 7001	MELDIN [®] 7021
Elongation, $ \% $ D6388.05.5Flexural Strength, psi (MPa)D79012,800 (88)13,000 (89.5)Flexural Modulus, psi x 10 ⁵ (GPa)D7903.65 (2.5)4.5 (3.1)Compressive Stress @ 10% Strain, psi (MPa)D6953,800 (26)3,400 (23)Compressive Modulus, psi x 10 ⁵ (GPa)D6954.0 (2.8)13,000 (16)Coeff. of Thermal ExpansionT3 - 500 °F (23 - 260 °C),15,300 (106)3.0 (2.1)Thermal Conductivity,BTU in/hr ft ² °F (W/m °C)F4332.15 (0.31)-ELECTRICALDielectric Constant 100 HzD1503.18-Dielectric Constant 100 HzD1503.16Dielectric Constant 10 HzD1503.14-OTHERSpecific Gravity (g/cm ³)D7921.341.42Hardness Rockwell ED78545-5536Water Absorption, 24 hours, %D5700.60.50Coeff. of Friction @ 25,000 PVD37020.270.12= 500 psi x 200 fpmD37020.270.12High Temperature Dimensional Stability037020.270.12Wechanical @ 500°F (260°C)Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)	MECHANICAL @ RT			
Elongation, $ \% $ D6388.05.5Flexural Strength, psi (MPa)D79012,800 (88)13,000 (89.5)Flexural Modulus, psi x 10 ⁵ (GPa)D7903.65 (2.5)4.5 (3.1)Compressive Stress @ 10% Strain, psi (MPa)D6953,800 (26)3,400 (23)Compressive Modulus, psi x 10 ⁵ (GPa)D6954.0 (2.8)13,000 (16)Coeff. of Thermal ExpansionT3 - 500 °F (23 - 260 °C),15,300 (106)3.0 (2.1)Thermal Conductivity,BTU in/hr ft ² °F (W/m °C)F4332.15 (0.31)-ELECTRICALDielectric Constant 100 HzD1503.18-Dielectric Constant 100 HzD1503.16Dielectric Constant 10 HzD1503.14-OTHERSpecific Gravity (g/cm ³)D7921.341.42Hardness Rockwell ED78545-5536Water Absorption, 24 hours, %D5700.60.50Coeff. of Friction @ 25,000 PVD37020.270.12= 500 psi x 200 fpmD37020.270.12High Temperature Dimensional Stability037020.270.12Wechanical @ 500°F (260°C)Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)	Tensile Strength, psi (MPa)	D638	10,500 (72.4)	9,100 (63)
Flexural Strength, psi (MPa)D79012,800 (88)13,000 (89.5)Flexural Modulus, psi x 10 ⁵ (GPa)D790 $3.65 (2.5)$ $4.5 (3.1)$ Compressive Stress @ 10% Strain, psi (MPa)D695 $3,800 (26)$ $3,400 (23)$ Compressive Modulus, psi x 10 ⁵ (GPa)D695 $18,500 (127.5)$ $15,300 (106)$ Coeff. of Thermal ExpansionD695 $4.0 (2.8)$ $3.0 (2.1)$ 73 - 500 °F (23 - 260 °C),in/in/°F (m/m/°C) x 10 ⁻⁵ E831 $2.7 (4.86)$ $2.5 (4.5)$ Thermal Conductivity,F433 $2.15 (0.31)$ $-$ ELECTRICAL D150 3.18 $-$ Dielectric Strength Short time 2 mmD150 3.16 $-$ (0.08") thick, V/mil (MV/m)D149580 (22.9)280 (11)Dielectric Constant 100 HzD150 3.16 $-$ Dielectric Constant 10 KHzD150 3.14 $-$ OTHERSpecific Gravity (g/cm ³)D792 1.34 1.42 Hardness Rockwell ED785 45.55 36 Water Absorption, 24 hours, %D570 0.6 0.50 Coeff. of Friction @ 25,000 PV 2500 psi x 200 fpmD3702 0.27 0.12 High Temperature Dimensional Stability 0530 $5,500 (38)$ $4,700 (32)$ Elongation, %D638 $5,500 (38)$ $4,700 (32)$		D638		
Flexural Modulus, psi x 105 (GPa) Compressive Stress @ 1% Strain, psi (MPa) Compressive Stress @ 10% Strain, psi (MPa) Compressive Stress @ 10% Strain, psi (MPa) D695D790 J695 $3.65 (2.5)$ J8,500 (127.5) $4.5 (3.1)$ 		D790	12,800 (88)	13,000 (89.5)
Compressive Stress @ 10% Strain, psi (MPa) Compressive Modulus, psi x 105 (GPa) Coeff. of Thermal Expansion $73 - 500 \ {}^{\circ}F (23 - 260 \ {}^{\circ}C),$ in/in/ $^{\circ}F$ (m/m/ $^{\circ}C$) x 10-5 Thermal Conductivity, BTU in/hr ft2 $^{\circ}F$ (W/m $^{\circ}C$)D695 E831 F43318,500 (127.5) 4.0 (2.8)15,300 (106) 3.0 (2.1) ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149 D150 D150 3.16 D150280 (22.9) 3.16 -280 (11)Dielectric Constant 100 Hz Dielectric Constant 10 KHz Dielectric Constant 1 MHzD792 D570 D5701.34 3.14OTHER Specific Gravity (g/cm ³) Hardness Rockwell E Water Absorption, 24 hours, % 250 psi x 100 fpm 2500 pri (260 °C)D792 D3702 D37021.34 0.25 0.231.42 0.19 0.66D3702 D3702 D3702 D3702 D37020.27 0.27 0.12 0.12 0.12 D3702 0.23High Temperature Dimensional Stability @ 500 °F (260 °C) Tensile Strength, psi (MPa) Elongation, %D638 D6385,500 (38) 7,54,700 (32) 5.2		D790	3.65 (2.5)	
Compressive Stress @ 10% Strain, psi (MPa) Compressive Modulus, psi x 105 (GPa) Coeff. of Thermal Expansion $73 - 500 \ {}^{\circ}F (23 - 260 \ {}^{\circ}C),$ in/in/ $^{\circ}F$ (m/m/ $^{\circ}C$) x 10-5 Thermal Conductivity, BTU in/hr ft2 $^{\circ}F$ (W/m $^{\circ}C$)D695 E831 F43318,500 (127.5) 4.0 (2.8)15,300 (106) 3.0 (2.1) ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149 D150 D150 3.16 D150280 (22.9) 3.16 -280 (11)Dielectric Constant 100 Hz Dielectric Constant 10 KHz Dielectric Constant 1 MHzD792 D570 D5701.34 3.14OTHER Specific Gravity (g/cm ³) Hardness Rockwell E Water Absorption, 24 hours, % 250 psi x 100 fpm 2500 pri (260 °C)D792 D3702 D37021.34 0.25 0.231.42 0.19 0.66D3702 D3702 D3702 D3702 D37020.27 0.27 0.12 0.12 0.12 D3702 0.23High Temperature Dimensional Stability @ 500 °F (260 °C) Tensile Strength, psi (MPa) Elongation, %D638 D6385,500 (38) 7,54,700 (32) 5.2		D695	3,800 (26)	
Compressive Modulus, psi x 10^5 (GPa) Coeff. of Thermal Expansion 73 - 500 °F (23 - 260 °C), in/in/°F (m/m/°C) x 10^{-5} Thermal Conductivity, BTU in/hr ft² °F (W/m °C)D6954.0 (2.8)3.0 (2.1)E831 Dielectric Conductivity, BTU in/hr ft² °F (W/m °C)F4332.7 (4.86)2.5 (4.5)ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)F4332.15 (0.31)-Dielectric Constant 100 Hz Dielectric Constant 10 Hz Dielectric Constant 1 MHzD149 D150580 (22.9) 3.18280 (11)OTHER Specific Gravity (g/cm³) Hardness Rockwell ED792 D5701.34 D5701.42 0.231.42 0.19Water Absorption, 24 hours, % D570D570 D5700.6 0.60.50 0.60.50Coeff. of Friction @ 25,000 PV = 500 psi x 100 fpm Coeff. of Friction @ 100,000 PV = 500 psi x 200 fpmD3702 D37020.27 0.270.12 0.12 Migh Temperature Dimensional Stability @ 500 °F (260 °C) Tensile Strength, psi (MPa) Elongation, %D638 D6385,500 (38) 7,54,700 (32) 5,2		D695		15,300 (106)
Coeff. of Thermal Expansion 73 - 500 °F (23 - 260 °C), in/in/°F (m/m/°C) x 10-5E8312.7 (4.86)2.5 (4.5)Thermal Conductivity, BTU in/hr ft² °F (W/m °C)F4332.15 (0.31) $-$ ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149 D150580 (22.9) 3.18280 (11)Dielectric Constant 100 Hz Dielectric Constant 10 kHzD1503.18 $-$ Dielectric Constant 10 kHzD1503.14 $-$ OTHER Specific Gravity (g/cm³) Hardness Rockwell ED7921.341.42Mater Absorption, 24 hours, % Uster Absorption, 48 hours, % Coeff. of Friction @ 25,000 PV = 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PV = 500 °F (260 °C) Tensile Strength, psi (MPa)D37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C) Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2				
in/in/°F (m/m/°C) x 10^{-5} E8312.7 (4.86)2.5 (4.5)Thermal Conductivity, BTU in/hr ft² °F (W/m °C)F4332.15 (0.31)- ELECTRICAL F4332.15 (0.31)-Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149580 (22.9)280 (11)Dielectric Constant 100 HzD1503.18-Dielectric Constant 10 HzD1503.16-Dielectric Constant 1 MHzD1503.14- OTHER D7921.341.42Hardness Rockwell ED78545-5536Water Absorption, 24 hours, %D5700.230.19Water Absorption, 48 hours, %D5700.250.23Coeff. of Friction @ 25,000 PVD37020.270.12 $= 500 \text{ psi x 100 fpm}$ D37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2	Coeff. of Thermal Expansion			
Thermal Conductivity, BTU in/hr ft² °F (W/m °C)F4332.15 (0.31) $-$ ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149580 (22.9)280 (11)Dielectric Constant 100 HzD150 3.18 $-$ Dielectric Constant 10 HzD150 3.16 $-$ Dielectric Constant 1 MHzD150 3.14 $-$ OTHERDisplayD792 1.34 1.42 Marchases Rockwell ED785 $45-55$ 36 Water Absorption, 24 hours, %D570 0.23 0.19 Coeff. of Friction @ 25,000 PVD3702 0.25 0.23 $= 500 \text{ psi x 100 fpm}$ D3702 0.27 0.12 High Temperature Dimensional Stability @ 500 °F (260 °C) Tensile Strength, psi (MPa)D638 $5,500$ (38) $4,700$ (32)Elongation, %D638 7.5 5.2		5021	27(100)	25(15)
BTU in/hr ft² °F (W/m °C)F433 $2.15 (0.31)$ $-$ ELECTRICAL Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m) Dielectric Constant 100 Hz Dielectric Constant 10 KHz Dielectric Constant 10 kHzD149 D150 $580 (22.9)$ $3.18280 (11)-OTHERSpecific Gravity (g/cm3)Hardness Rockwell ED792D7851.34D5701.42O570-OTHERSuffic of Friction @ 25,000 PV= 500 psi x 200 fpmHigh Temperature Dimensional Stability@ 500 °F (260 °C), % ChangeMechanical @ 500°F (260°C)Tensile Strength, psi (MPa)D792D7921.34D7921.42D785BTU in/hr ft² °F (W/m °C)D792D1501.34D150-OTHERSpecific Gravity (g/cm3)Hardness Rockwell ED792D7921.34D7921.42D785OTHERSubstription, 24 hours, %D570D792D5700.6O.500.50O.50Oceff. of Friction @ 100,000 PV= 500 psi x 200 fpmD3702D37020.25O.270.23O.12High Temperature Dimensional Stability@ 500 °F (260 °C)Tensile Strength, psi (MPa)D638D6385,500 (38)T.54,700 (32)S.2$		E831	2.7 (4.86)	2.5 (4.5)
ELECTRICAL Dielectric Strength Short time 2 mm $(0.08")$ thick, V/mil (MV/m)D149 D149580 (22.9) S80 (22.9)280 (11) 280 (11)Dielectric Constant 100 Hz Dielectric Constant 10 kHzD150 D150 3.18 $-$ D150 $-$ D150Dielectric Constant 1 MHzD150 D150 3.16 $ -$ D150OTHER Specific Gravity (g/cm ³)Mardness Rockwell ED792 D785 1.34 D570 1.42 D570Water Absorption, 24 hours, % Water Absorption, 48 hours, % Coeff. of Friction @ 25,000 PV = 250 psi x 100 fpm Coeff. of Friction @ 100,000 PV = 500 psi x 200 fpmD3702 D3702 0.25 0.23 0.12 High Temperature Dimensional Stability @ 500 °F (260 °C), % Change Mechanical @ 500°F (260°C) Tensile Strength, psi (MPa)D638 D638 $5,500$ (38) 7.5 $4,700$ (32) Elongation, %		E422	2 15 (0 21)	
Dielectric Strength Short time 2 mm (0.08") thick, V/mil (MV/m)D149 D150 $580 (22.9)$ $280 (11)$ Dielectric Constant 100 HzD150 3.18 $-$ Dielectric Constant 10 kHzD150 3.16 $-$ Dielectric Constant 1 MHzD150 3.14 $-$ OTHERSpecific Gravity (g/cm ³)Hardness Rockwell ED792 1.34 Water Absorption, 24 hours, %D570 0.23 Water Absorption, 48 hours, %D570 0.6 Coeff. of Friction @ 25,000 PV $250 \text{ psi x 100 fpm}$ D3702 $= 250 \text{ psi x 200 fpm}$ D3702 0.27 0.12 High Temperature Dimensional Stability @ 500 °F (260 °C), % ChangeINTERNAL $-$ Mechanical @ 500°F (260°C)D638 $5,500 (38)$ $4,700 (32)$ Elongation, %D638 7.5 5.2	BTU in/hr ft ² °F (W/m °C)	F433	2.15 (0.31)	-
	ELECTRICAL			
Dielectric Constant 100 HzD150 3.18 $-$ Dielectric Constant 10 kHzD150 3.16 $-$ Dielectric Constant 1 MHzD150 3.14 $-$ OTHERSpecific Gravity (g/cm ³)D792 1.34 1.42 Hardness Rockwell ED785 $45-55$ 36 Water Absorption, 24 hours, %D570 0.23 0.19 Water Absorption , 48 hours, %D570 0.6 0.50 Coeff. of Friction @ 25,000 PV 250 psi x 100 fpmD3702 0.25 0.23 Coeff. of Friction @ 100,000 PVD3702 0.27 0.12 High Temperature Dimensional Stability 0500 °F (260 °C), % ChangeINTERNAL $ 0.04\%$ MaxMechanical @ $500^{\circ}F$ ($260^{\circ}C$)D638 $5,500$ (38) $4,700$ (32)Elongation, %D638 7.5 5.2	Dielectric Strength Short time 2 mm			
Dielectric Constant 10 kHzD150 3.16 $-$ Dielectric Constant 1 MHzD150 3.14 $-$ OTHERD792 1.34 1.42 Specific Gravity (g/cm ³)D792 1.34 1.42 Hardness Rockwell ED785 $45-55$ 36 Water Absorption, 24 hours, %D570 0.23 0.19 Water Absorption , 48 hours, %D570 0.6 0.50 Coeff. of Friction @ 25,000 PVD3702 0.25 0.23 $= 250 \text{ psi x 100 fpm}$ D3702 0.27 0.12 High Temperature Dimensional Stability 03702 0.27 0.12 Wechanical @ 500°F ($260^{\circ}C$)TERNAL $ 0.04\%$ MaxMechanical @ 500°F ($260^{\circ}C$)D638 $5,500$ (38) $4,700$ (32)Elongation, %D638 7.5 5.2	(0.08") thick, V/mil (MV/m)	D149	580 (22.9)	280 (11)
Dielectric Constant 1 MHzD150 3.14 $-$ OTHERD792 1.34 1.42 Specific Gravity (g/cm ³)D792 1.34 1.42 Hardness Rockwell ED785 $45-55$ 36 Water Absorption, 24 hours, %D570 0.23 0.19 Water Absorption, 48 hours, %D570 0.6 0.50 Coeff. of Friction @ 25,000 PVD3702 0.25 0.23 $= 250 \text{ psi x 100 fpm}$ D3702 0.27 0.12 High Temperature Dimensional Stability 03702 0.27 0.12 High Temperature Dimensional Stability 0638 $5,500$ (38) $4,700$ (32)Elongation, %D638 7.5 5.2	Dielectric Constant 100 Hz	D150	3.18	_
OTHERD792 1.34 1.42 Specific Gravity (g/cm ³)D792 1.34 1.42 Hardness Rockwell ED785 $45-55$ 36 Water Absorption, 24 hours, %D570 0.23 0.19 Water Absorption , 48 hours, %D570 0.6 0.50 Coeff. of Friction @ 25,000 PVD3702 0.25 0.23 $= 250 \text{ psi x 100 fpm}$ D3702 0.25 0.23 Coeff. of Friction @ 100,000 PVD3702 0.27 0.12 High Temperature Dimensional Stability 0.3702 0.27 0.12 High Temperature Dimensional StabilityINTERNAL $ 0.04\%$ MaxMechanical @ $500^{\circ}F$ ($260^{\circ}C$)D638 $5,500$ (38) $4,700$ (32)Elongation, %D638 7.5 5.2	Dielectric Constant 10 kHz	D150	3.16	_
Specific Gravity (g/cm³)D7921.341.42Hardness Rockwell ED785 $45-55$ 36Water Absorption, 24 hours, %D5700.230.19Water Absorption , 48 hours, %D5700.60.50Coeff. of Friction @ 25,000 PVD37020.250.23= 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PVD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), % ChangeINTERNAL-0.04% MaxMechanical @ 500°F (260°C)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2	Dielectric Constant 1 MHz	D150	3.14	-
Specific Gravity (g/cm³)D7921.341.42Hardness Rockwell ED785 $45-55$ 36Water Absorption, 24 hours, %D5700.230.19Water Absorption , 48 hours, %D5700.60.50Coeff. of Friction @ 25,000 PVD37020.250.23= 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PVD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), % ChangeINTERNAL-0.04% MaxMechanical @ 500°F (260°C)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2	OTHER			
Hardness Rockwell ED78545-5536Water Absorption, 24 hours, $\%$ D5700.230.19Water Absorption, 48 hours, $\%$ D5700.60.50Coeff. of Friction @ 25,000 PVD37020.250.23= 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PVD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), $\%$ ChangeINTERNAL-0.04 $\%$ MaxMechanical @ 500°F (260°C) Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, $\%$ D6387.55.2	-	D792	1 34	1 42
Water Absorption, 24 hours, $\%$ D5700.230.19Water Absorption, 48 hours, $\%$ D5700.60.50Coeff. of Friction @ 25,000 PVD37020.250.23= 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PVD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), $\%$ ChangeINTERNAL-0.04 $\%$ MaxMechanical @ 500°F (260°C) Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, $\%$ D6387.55.2				
Water Absorption , 48 hours, $\%$ D5700.60.50Coeff. of Friction @ 25,000 PV $D3702$ 0.250.23 $= 250 \text{ psi x 100 fpm}$ D37020.250.23Coeff. of Friction @ 100,000 PV $D3702$ 0.270.12 $= 500 \text{ psi x 200 fpm}$ D37020.270.12High Temperature Dimensional Stability M Change M TERNAL $-$ 0.04% MaxMechanical @ 500°F (260°C)D6385,500 (38)4,700 (32)Elongation, $\%$ D6387.55.2				
Coeff. of Friction @ 25,000 PV = 250 psi x 100 fpmD37020.250.23Coeff. of Friction @ 100,000 PV = 500 psi x 200 fpmD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), % ChangeINTERNAL-0.04% MaxMechanical @ 500°F (260°C) Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2				
		2570	0.0	0.50
Coeff. of Friction @ 100,000 PV = 500 psi x 200 fpmD37020.270.12High Temperature Dimensional Stability @ 500 °F (260 °C), % ChangeINTERNAL $-$ 0.04% MaxMechanical @ 500°F (260°C) Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2		D3702	0.25	0.23
= 500 psi x 200 fpm D3702 0.27 0.12 High Temperature Dimensional Stability INTERNAL - 0.04% Max Mechanical @500°F (260°C) Tensile Strength, psi (MPa) D638 5,500 (38) 4,700 (32) Elongation, % D638 7.5 5.2		23702	0.25	0.25
High Temperature Dimensional Stability INTERNAL - 0.04% Max @ 500 °F (260 °C), % Change INTERNAL - 0.04% Max Mechanical @ 500°F (260°C) D638 5,500 (38) 4,700 (32) Elongation, % D638 7.5 5.2		D3702	0.27	0.12
@ 500 °F (260 °C), % Change INTERNAL - 0.04% Max Mechanical @ 500°F (260°C) D638 5,500 (38) 4,700 (32) Elongation, % D638 7.5 5.2		23702	0.27	0.12
Mechanical @500°F (260°C) D638 5,500 (38) 4,700 (32) Tensile Strength, psi (MPa) D638 7.5 5.2		INTERNAL	_	0.04% Max
Tensile Strength, psi (MPa)D6385,500 (38)4,700 (32)Elongation, %D6387.55.2				oro no max
Elongation, % D638 7.5 5.2		D638	5,500 (38)	4,700 (32)
Flexural Strength, p_{s1} (MPa) D790 7,000 (48) 7,500 (52)	Flexural Strength, psi (MPa)	D790	7,000 (48)	7,500 (52)
Flexural Modulus, psi x 10^5 (GPa) D790 2.0 (1.3) 2.64 (1.8)		D790		

Meldin[®] 7000 is the registered trademarks of Furon Co.

Noryl[®] Polyphenylene oxide, modified

CHARACTERISTICS:Good electrical insulating propertiesNoryl exhibits a continuous use	Noryl [®] General Properties	ASTM or UL Test	Typical Values
 temperature in excess of 220°F Wide range of UL flammability ratings from UL94 HB to UL94 V-1 Possesses good hydrolytic stability 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption, 24 hrs, 73°F (%)	D792 D570	1.08 0.20
 APPLICATIONS: Business equipment Automative Electrical insulation Telecommunications Applicances Electronics MATERIAL AVAILABILITY: Rod: 1/4" to 6" Sheet: 1/4" to 4"	MECHANICAL Tensile Strength Break, 73°F (psi) Tensile Modulus, 73°F (psi) Elongation, Break , 73°F(%) Flexural Strength, 73°F (psi) Flexural Modulus, 73°F (psi) Izod Impact Strength, Notched, (ft-lbs/in) Rockwell Hardness, R Coeff. lof Friction, 40 psi, 50 fpm <u>Static</u> Dynamic	D638 D638 D638 D790 D790 D256 D785	9,600 3.5×10^{5} 25 13,400 3.7×10^{5} 3.5 119 0.32 0.39
GRADES / COLOURS: Noryl [®] : Black	THERMALDeflection Temperature, °F66 psi 264 psiMaximum Temperature, °FLong Term Short TermCoeff. of Linear Thermal Expansion (in./in./°F)Vicat Softening Temperature, °FApplicable Temperature Range for Thermal Expansion, °FFlammabilityELECTRICAL Dielectric Strength (V/mil) Diselectric Constant, 60 Hz, 73°F, 50% RH Dissipation Factor, 60 Hz, 73°F Volume Resistivity, 73°F	D696 D648 D696 D648 D696 - UL94 D149 D150 D150 D150 D257	279 254 220 230 3.3 x 106 310 0 - 140 V-1 500 2.7 0.0007 1 x 1017

 $\mathit{Noryl}^{\mathbb{B}}$ is the registered trademark of General Electric Company

Nylon Cast

(Polyamide)

CHARACTERISTICS:

- Bearing and wear material
- High tensile strength and modulus of elasticity
- High impact resistance
- High heat distortion temperature, and resist wear, abrasion, and vibration
- Withstand a wide variety of chemicals, alkalies, dilute acids or oxidizing agents
- 1/7 the weight of cast iron

APPLICATIONS:

- Bearings, thrust washers, bushings, wear pads, sheaves, rollers, gears, sprockets, and wheels
- Used in construction, material handling systems
- Pulp and paper processing equipment, industrial equipment.

MATERIAL AVAILABILITY:

Rod: 2" to 20" Sheet: 1/4" to 4"

GRADES / COLOURS:

Nylon MC[®] 901: Blue, Black Nylon MC[®] 907: Black, Ivory (Natural Colour) Nylatron[®] GSM MoS2 Type 6: Dark Grey Nylatron[®] GSM MoS2/Oil Type 6: Blue Nylatron[®] NSM Solid Lubricant Type 6: Grey

Nylon Cast General Properties	ASTM or UL Test	Nylon MC907, 901 Unfilled, Type 6	Nylatron GSM MoS2, Type 6	Nylatron GSM Blue MoS2 & Oil Type 6	Nylatron NSM Solid-Lube, Type 6
PHYSICAL					
Specific Gravity (g/cm ³)	D792	1.15	1.16	1.15	1.15
Water Absorption, 24 hrs (%)	D570	0.3	0.3	0.22	0.25
Saturation $(\tilde{\%})$		7.0	7.0	-	7.0
MECHANICAL					
Tensile Strength (psi)	D638	12,000	10,500	10,000	11,000
Tensile Modulus (psi)	D638	400,000	400,000	500,000	410,000
Tensile Elongation at Break (%)	D638	20	30	35	20
Flexural Strength (psi)	D790	16,000	16,000	15,000	16,000
Flexural Modulus (psi)	D790	500,000	400,000	425,000	400,000
Compressive Strength (psi)	D695	15,000	14,000	13,000	14,000
Compressive Modulus (psi)	D695	400,000	400,000	425,000	400,000
Hardness, Rockwell R	D785	R115	R110	R117	R110
IZOD Notched Impact (ft-lb/in)	D256	0.4	0.5	0.9	0.5
THERMAL					
Coeff. of Linear Thermal Expansion					
(x 10 ⁻⁵ in./in./°F)	D696	3.5	3.5	5.9	5.0
Heat Deflection Temp (°F / °C) at 264 psi	D648	200 / 93	200 / 93	_	200 / 93
Melting Temperature (°F / °C)	D3418	420 / 215	420 / 215	420 / 215	420 / 215
Max Operating Temp (°F / °C)	-	200 / 93	200 / 93	200 / 93	200 / 93
Thermal Conductivity					
(BTU-in/ft ² -hr-°F)	C177	_	_	_	-
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		_	_	_	-
Flammability Rating	UL94	HB	HB	-	HB
ELECTRICAL					
Dielectric Strength (V/mil) short time, 1/8" thick	D149	500	400	_	400
Dielectric Constant at 60 Hz	D150	3.7	3.7	_	_
Dissipation Factor at 60 Hz	D150	-	_	_	-
Volume Resistivity (ohm-cm) at 73°F, 50% RH	D257	> 10 ¹³	> 10 ¹³	> 10 ¹³	> 10 ¹³

NYLATRON[®] is the registered trademark of Quadrant Engineering Plastics.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Nylon 6 Extruded

(Polyamide 6)

CHARACTERISTICS:

- Very Tough
- Resistant to many oils, greases, diesels and petrol
- Electrically insulating
- Wear resistant
- Good sliding properties
- Easily machined

APPLICATIONS:

- Gear wheels
- Friction bearings
- Friction strips
- Conveyor screws
- Bushes
- Cam discs
- Rope pulleys
- Castors
- Impact plates

MATERIAL AVAILABILITY:

Rod: 3/16" to 6" Sheet: 1/32" to 4"

GRADES / COLOURS:

Nylon 6 Black & White (Natural)

Nylon 6 Extruded General Properties	DIN Standard	Typical Values
PHYSICAL	DD1 52 450	1.10
Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.13 3
MECHANICAL	DIN EN 160 525	05 / 60
Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527 DIN EN ISO 527	85 / 60 4
Tensile strength at break, MPa Elongation at break, %	DIN 53 455	70 / 200
Modulus of elasticity in tension, MPa	DIN EN ISO 527	3000 / 1800
Modulus of elasticity after flexural test, MPa Hardness	DIN 53 456	160 / 70
Impact strength 23°C (Charpy), KJ/m ²	(Kugeldruckhärte) DIN EN ISO 179 (Charpy)	n.b.
Creep rupture strength, MPa after 1000 h with static load	Direlition 1/3 (enaipy)	45
Time yield limit, MPa for 1% elongation after 1000 h		4.5
Co-efficient of friction $p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$		0.38 - 0.45
on steel. hardened and ground Wear, μ m/km p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground		0.23
THERMAL		
Crystalline melting point, °C	DDI 52 7/5	(0.15
Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	60 / 5
Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B	75
	(DIN 53 461)	190
Max. service temperature, °C short term		160
long term Thermal conductivity (23°C), W/(K·m)		100 0.23
Specific heat(23°C), J/g.K		1.7
Coeff. of thermal expansion (23-55°C), 10^{-5} 1/K	DIN 53 752	8
ELECTRICAL	DDI 52 492 JEC 250	
Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz)	DIN 53 483, IEC-250 DIN 53 483, IEC-250	3.7 - 7 0.0031 - 0.3
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^13
Surface resistance, Ω	DIN IEC 60093	10^12
Dielectric strength, kV/mm	DIN 53 481, IEC-243, VDE 0303 Teil 2	20 - 50
Resistance to tracking	DIN 53 480, VDE 0303 Teil 1	CTI 600
Flammability acc. to UL standard 94		HB

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Nylon Extruded

(Polyamide)

CHARACTERISTICS:

- Extremely good wear resistance
- High tensile strength and modulus of elasticity
- High impact resistance
- High heat distortion temperature, and resist wear, abrasion, and vibration
- Withstand variety of chemicals, alkalies, dilute acids
- 1/7 the weight of cast iron

APPLICATIONS:

- Bearings, thrust washers, bushings, wear pads, sheaves, rollers, gears, sprockets, and wheels.
- Used in construction, material handling systems.
- Pulp and paper processing equipment, industrial equipment.

MATERIAL AVAILABILITY:

Rod: 3/16" to 4 3/4" Sheet: 1/32" to 4"

GRADES / COLOURS:

Nylon 101: Black & White (Natural) Nylatron[®] GS MoS2 Type 6/6: Black & White (Natural) Nylon 6/6 30% Glass Filled: Black & Grey

Nylon Extruded General Properties	ASTM or UL Test	Nylon 101, 6/6 Unfilled	Nylatron GS 6/6 MoS2-Filled	Nylon 6/6 30% Glass
PHYSICAL				
Specific Gravity (g/cm ³)	D792	1.15	1.16	1.35
Water Absorption, 24 hrs (%)	D570	0.3	0.3	0.7
Saturation (%)		7.0	7.0	5.4
MECHANICAL				
Tensile Strength (psi)	D638	11,500	12,500	27,000
Tensile Modulus (psi)	D638	425,000	480,000	1,400,000
Tensile Elongation at Break (%)	D638	50	25	3
Flexural Strength (psi)	D790	15,000	17,000	39,000
Flexural Modulus (psi)	D790	450,000	460,000	1,200,000
Compressive Strength (psi)	D695	12,500	16,000	_
Compressive Modulus (psi)	D695	420,000	420,000	-
Hardness, Rockwell R	D785	M85 / R115	M85 / R115	M101
IZOD Notched Impact (ft-lb/in)	D256	0.6	0.5	2.1
THERMAL				
Coeff. of Linear Thermal Expansion				
(x 10 ⁻⁵ in./in./°F)	D696	5.5	4.0	1.2
Heat Deflection Temp (°F / °C) at 264 psi	D648	200 / 93	200 / 93	482 / 250
Melting Temperature (°F / °C)	D3418	500 / 260	500 / 260	491 / 255
Max Operating Temp (°F / °C)	_	210/99	220 / 104	230 / 110
Thermal Conductivity				
(BTU-in/ft ² -hr-°F)	C177	1.7	1.7	1.7
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		5.9	5.9	5.9
Flammability Rating	UL94	V-2	V-2	HB
ELECTRICAL				
Dielectric Strength (V/mil) short time, 1/8" thick	D149	400	350	530
Dielectric Constant at 60 Hz	D150	3.6	_	3.5
Dissipation Factor at 60 Hz	D150	0.02	-	0.02
Volume Resistivity (ohm-cm) at 73°F, 50% RH	D257	> 10 ¹³	> 10 ¹³	10 ¹⁵

NYLATRON[®] is the registered trademark of Quadrant Engineering Plastic.

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

PEEK (PolyEtherEtherKetone)

CHARACTERISTICS:

- Excellent flexural, impact and tensile characteristics
- Very high continuous working temperature
- Very high heat distortion temperature
- Exceptional chemical resistance
- A superior dielectric at high temperatures and frequencies
- Good radiation resistance
- Outstanding wear and abrasion resistance
- · Low smoke and toxic gas emissions
- Excellent hydrolysis resistance

APPLICATIONS:

• Automotive, marine, nuclear, oil well, electronics, medical aerospace fields

MATERIAL AVAILABILITY:

Rod: 3/16" to 4 3/4" Sheet: 1/4" to 4"

GRADES / COLOURS:

PEEK (Unfilled): Light Brown & Black PEEK (30% Glass filled): Light Brown PEEK (30% Carbon Filled): Black PEEK (Bearing Grade): Dark Grey & Black

PEEK General Properties	ASTM or UL test	Unfilled	30% Glass Fibers	30% Carbon Fibers	Bearing Grade
PHYSICAL					
Special Gravity (g/cm ³)	D792	1.31	1.41	1.54	1.44
Water Absorption, 24 hrs (%)	D570	0.10	0.10	0.06	0.05
MECHANICAL					
Tensile Strength (psi)	D638	16,000	18,000	26,000	11,000
Tensile Modulus (psi)	D638	500,000	1,000,000	1,400,000	850,000
Tensile Elongation at Break (%)	D638	20	3	1	2
Flexural Strength (psi)	D790	25,000	28,000	38,000	27,500
Flexural Modulus (psi)	D790	600,000	1,000,000	1,700,000	1,100,000
Compressive Strength (psi)	D695	20,000	26,000	43,000	26,700
Compressive Modulus (psi)	D695	500,000	1,000,000	_	_
Hardness, Rockwell	D785	M100	M103	M104	M85
IZOD Impact Notched (ft-lb/in)	D256	1.0	1.4	1.5	0.7
THERMAL					
Coeff. of Linear Thermal Expansion					
(x 10 ⁻⁵ in./in./°F)	D696	2.6	1.2	1.0	1.7
Heat Deflection Temp (°F / °C) at 264 psi	D648	320 / 160	600 / 315	550 / 288	383 / 195
Melting Temp ($^{\circ}F / ^{\circ}C$)	D3418	644 / 340	644 / 340	644 / 340	-
Max Operating Temp (°F / °C)	_	480 / 249	480 / 249	500 / 260	482 / 250
Thermal Conductivity					
(BTU-in/ft ² -hr-°F)	C177	1.75	2.98	6.4	1.7
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		6.03	10.3	22.0	5.9
Flammability Rating	UL94	V-0	V-0	V-0	V-0
ELECTRICAL					
Dielectric Strength (V/mil) short time, 1/8" thick	D149	480	500	32	_
Dielectric Constant at 1 MHz	D150	3.30	_	-	_
Dissipation Factor at 1 MHz	D150	0.003	_	_	_
Volume Resistivity (ohm-cm) at 50% RH	D257	4.9 x 10 ¹⁶	5 x 10 ¹⁶	10 ⁵	107

PEEK is the registered trademark of Victrex USA, Inc.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Phenolics Laminate

Paper, Canvas & Linen

CHARACTERISTICS:

- Physical strength, resiliency
- Excellent electrical properties
- Mechanical and electrical applications
- High impact and compressive strengths
- Easy to saw, drill, tap, and machine with ordinary tools
- For greater strength and machinability, cotton-fabric phenolics are often a good choice.

APPLICATIONS:

- Insulating washers, spacers, terminal boards, switch bases, and other electrical components
- Spacers, and bearing surfaces
- Radio parts, terminal bases and strips

MATERIAL AVAILABILITY:

Rod: 1/4" to 8" Sheet: 0.02" to 6"

GRADES / COLOURS:

Paper: Brown/ Black Canvas: Brown/ Black Linen: Brown/ Black

Phenolics Laminate General Properties	ASTM or UL Test	Paper	Medium Weaves Canvas	Fine Weaves Linen
PHYSICAL				
Special Gravity (g/cm ³) Water Absorption, 24 hrs (%)	D792 D570	1.35 2.0	1.37 2.5	1.34 1.8
	2070	2.0		
MECHANICAL				
Tensile Strength (psi)	D638	15,000	11,000	13,000
-lengthwise -crosswise	D038	12,000	9,000	9,000
Flexural Strength (psi)		12,000	9,000	9,000
-lengthwise	D790	16,000	17,500	22,000
-crosswise		13,200	15,000	16,000
Flexural Modulus (psi)				
-lengthwise	D790	1,100,000	1,600,000	1,600,000
-crosswise		900,000	1,500,000	1,200,000
IZOD Notched Impact (ft-lb/in) -lengthwise	D256	0.65	1.70	1.35
-renguiwise -crosswise	D230	0.63	1.70	1.33
Compressive Strength (psi)	D695	32,000	37,000	37,000
Hardness, Rockwell M	D785	M100	M100	M100
THERMAL				
Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)				
-lengthwise	D696	0.80	1.10	1.00
-crosswise		1.20	1.22	1.06
Max Operating Temp (°F / °C)	-	257 / 125	257 / 125	285 / 140
Thermal Conductivity	~			
$(BTU-in/ft^2-hr-°F)$	C177	2.03	2.03	2.03
(x 10 ⁻⁴ cal/cm-sec-°C) Flammability Rating	UL94	7.0 H-B	7.0 H-B	7.0 H-B
	UL94	11-D	11-D	11-D
ELECTRICAL				
Dielectric Strength (V/mil) short time, 1/8" thick	D149	750(XX)	550(CE)	625(LE)
Dielectric Constant at 1 MHz	D150	5	5	6
Dissipation Factor at 1 MHz	D150	0.045	-	0.045
Arc Resistance (sec)	D495	110	15	15

Polycarbonate

extruded

CHARACTERISTICS:

- High impact strength
- High tensile, shear, and flexural strength
- High modulus of elasticity
- Low deformation under load
- Low coefficient of thermal expansion
- Good electrical insulation properties
- Easy to fabricate & machine

APPLICATIONS:

- Electrical connectors
- Brush holders
- Insulators
- Relay components
- Instrument covers
- Machine guards

MATERIAL AVAILABILITY:

Rod: 4mm to 200mm Sheet: 2mm to 100mm

GRADES / COLOURS:

Polycarbonate Unfilled: Transparent Polycarbonate 30 GF: Light Grey/ Black

Polycarbonate	ASTM or	Typical Values	
General Properties	UL Test	Unfilled	30% Glass
PHYSICAL			
Special Gravity (g/cm ³)	D792	1.2	1.43
Water Absorption, 24 hrs (%)	D570	0.12	0.12
MECHANICAL			
Tensile Strength (psi)	D638	9,500	19,000
Tensile Modulus (psi)	D638	320,000	_
Tensile Elongation at Break (%)	D638	60	10
Flexural Strength (psi)	D790	15,000	23,000
Flexural Modulus (psi)	D790	375,000	1,100,000
Compressive Strength (psi)	D695	12,000	18,000
Compressive Modulus (psi)	D695	240,000	500,000
Hardness, Rockwell	D785	M70 / R118	M92
IZOD Notched Impact (ft-lb/in)	D256	13	2
THERMAL			
Coeff. of Linear Thermal Expansion			
(x 10 ⁻⁵ in./in./°F)	D696	3.9	1.2
Heat Deflection Temp (°F / °C) at 264 psi	D648	270 / 132	295 / 146
Glass Transition Temp (°F / °C)	D3418	293 / 145	300 / 149
Max Operating Temp (°F / °C)	_	250 / 121	270 / 132
Thermal Conductivity			
(BTU-in/ft ² -hr-°F)	C177	1.3	1.3
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		6.9	6.9
Flammability Rating	UL94	H-B / V-0	H-B / V-0
ELECTRICAL			
Dielectric Strength (V/mil) short time, 1/8" thick	D149	390	470
Dielectric Constant at 60 Hz	D150	3.17	3.35
Dissipation Factor at 60 Hz	D150	0.0009	0.0011
Volume Resistivity (ohm-cm)at 50% RH	D257	1016	1016

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Polycarbonate PC-300 / PC-350

(Static-Dissipative)

CHARACTERISTICS:

- Electrostatic decay in less than 0.05 second per Federal Test Standard 101C, Method 4046.1 (rapid dissipation without arcing)
- Ideal surface resistivity without need for ionizers or coatings
- Permanence in static dissipation performance without periodic recoating
- Humidity-independent static charge control

APPLICATIONS:

- Widely used in clean rooms by the semiconductor, electronic, micro-manufacturing, pharmaceutical, and biomedical industries
- perimeter windows, transparent room partitions, light-weight floor-to-ceiling window walls
- Mini-environment glazing panels
- · Equipment enclosures

MATERIAL AVAILABILITY:

Rod: 1/8", 1/16", 1/4" 3/8" and 1/2" Sheet: 4ft and 8ft

GRADES / COLOURS:

PC-300TM: Clear and tinted PC-350TM: Clear and tinted

Polycarbonate PC-300 / PC-350 General Properties	ASTM UL Test	PC-300™ Flat Sheet	PC-350™ Heat-Formable
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.20	1.20
MECHANICAL			
Tensile Strength (psi)	D638	9,500	9,500
Tensile Modulus (psi)	D638	345,000	345,000
Tensile Elongation at Break (%)	D638	100	100
Flexural Strength (psi)	D790	13,500	13,500
Flexural Modulus (psi)	D790	345,000	345,000
Compressive Strength (psi)	D695	12,500	12,500
IZOD Impact Notched (ft-lb/in)	D256	16	16
THERMAL			
Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)	D696	3.8	3.8
Heat Deflection Temp (°F / °C) at 264 psi	D648	270 / 132	270 / 132
Vicat Softening Temp (°F / °C)	D3418	310 / 154	310 / 154
Max Operating Temp (°F / °C)	_	170 / 77	170 / 77
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	1.3	1.3
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		4.5	4.5
Flammability Rating	UL94	V-0	V-0
ELECTRICAL			
Surface Resistivity (ohms/square) at 50% RH	D257	$10^{6} - 10^{8}$	$10^6 - 10^8$
OPTICAL TRANSPARENCY			
3mm Transparent Clear Transmittance, Total (%)	D1003	74	74
Haze (%)	D1003	5	5
11a2c (10)	D1003	5	5

Polycarbonate PC-300 / PC-350 are registered trademarks of Scicron Technologies.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Polyethylene 300

CHARACTERISTICS:

- Good fatigue and wear resistance
- Higher impact strength
- Low moisture absorption
- PE-300 is Self Lubricating
- Shatter resistant
- Abrasion and corrosion resistant

APPLICATIONS:

- Chemical equipment industry
- Food processing
- Materials handling
- Bottling and packaging industry
- Mechanical engineering
- Guide rails, chain guides

MATERIAL AVAILABILITY:

Rod:	6mm to 250mm
Sheet:	2mm to 150mm

GRADES / COLOURS:

PE-300 (HD): Natural, Green, Black

Polyethylene 300 General Properties	Test Method	Typical Values
PHYSICAL		
Molecular weight	_	_
Density, g/cm ³	ISO 1183	0.954
Melt index MFR 190/2.16, g/10 min	ISO 1133	_
Melt index MFR 190/5, g/10 min	ISO 1133	0.45 +/- 0.05
Melt index MFR 190/21.6, g/10 min	ISO 1133	11 +/- 1
Melt index MFR 230/5, g/10 min	ISO 1133	-
MECHANICAL		
Yield stress, N/ mm2	ISO 527 ; 50 mm / min	23
Elongation at yield stress, %	ISO 527 ; 50 mm / min	>= 8
Breaking stress, N/ mm2	ISO 527 ; 50 mm / min	>= 32
Elongation at break (yieldpoint), %	ISO 527 ; 50 mm / min	> 50
Modulus of elasticity (tensile), N/ mm2	ISO 527	>= 700
Ball indentation hardness,		
30 sec value, N/mm2	DIN ISO 2039/1	> 40
Shore hardness D, 3 sec value	DIN 53505	60
Shore hardness D, 15 sec value	DIN 53505	59
Impact strength, mJ/ mm2	DIN 53453	-
Notched impact strength, mJ/ mm2	ISO 179	12
Notched impact strength with		
15°V-notch, mJ/ mm2	ISO 179	-
Wear by the sand-slurry-method	internal test Methode	1,000
THERMAL		
Vicat softening point VST, °C	DIN ISO 306/B	67
Cristalline melting range, °C	ISO 3146	130
Coeff of linear expansion		
between 23° and 80°C, 1/K	DIN 53752	2 x 10^-4
Thermal conductivity at 23°C, W/(m x K)	DIN 52612	0.41
ELECTRICAL		
Volume resistivity, OHM x cm	VDE 0303/3	>10^16
Surface resistance, OHM	VDE 0303/3	>10^15
Dielectric strength, kV/ mm	VDE 0303/2	-
Arc resistance, grade	VDE 0303/5	L4

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Polyethylene 500

CHARACTERISTICS:Excellent chemical resistance, good fatigue and wear resistance	Polyethylene 500	Test	Typical
	General Properties	Method	Values
 No moisture absorption Higher impact strength Low moisture absorption PE-500 is Self Lubricating, shatter resistant Abrasion and corrosion resistant APPLICATIONS: Materials handling 	PHYSICAL	ISO 1183	-
	Molecular weight	ISO 1133	0.954
	Density, g/cm ³	ISO 1133	-
	Melt index MFR 190/2.16, g/10 min	ISO 1133	< 0.1
	Melt index MFR 190/5, g/10 min	ISO 1133	1.7 - 2.5
	Melt index MFR 190/21.6, g/10 min	ISO 1133	-
 Plates in vacuum packaging machinery Deflecting blades Pump casings Rope guides Chain wheels and rails Sliding rails for Sideflexing chains MATERIAL AVAILABILITY: Rod: 6mm to 250mm Sheet: 2mm to 150mm GRADES / COLOURS: PE-500 (HMW): Natural, Green, Black	MECHANICAL Yield stress, N/ mm2 Elongation at yield stress, % Breaking stress, N/ mm2 Elongation at break (yieldpoint), % Modulus of elasticity (tensile), N/ mm2 Ball indentation hardness, 30 sec value, N/mm2 Shore hardness D, 3 sec value Shore hardness D, 15 sec value Impact strength, mJ/ mm2 Notched impact strength, mJ/ mm2 Notched impact strength with 15°V-notch, mJ/ mm2 Wear by the sand-slurry-method	ISO 527 ; 50 mm / min ISO 527 DIN ISO 2039/1 DIN 53505 DIN 53505 DIN 53453 ISO 179 ISO 179 internal test Methode	> 28 >= 8 >= 36 > 50 >= 800 >= 45 62 60 without break without break without break >= 18 400
	 THERMAL Vicat softening point VST, °C Cristalline melting range, °C Coefficient of linear expansion between 23° and 80°C, 1/K Thermal conductivity at 23°C, W/(m x K) ELECTRICAL Volume resistivity, OHM x cm Surface resistance, OHM Dielectric strength, kV/ mm Arc resistance, grade 	DIN ISO 306/B ISO 3146 DIN 53752 DIN 52612 VDE 0303/3 VDE 0303/3 VDE 0303/2 VDE 0303/5	76 136 - 138 2 x 10^-4 0.40 >10^14 >10^11 40 L4

Polyethylene 1000

CHARACTERISTICS: Polyethylene 1000 Test Typical · Excellent chemical resistance, good Values **General Properties** Method fatigue and wear resistance • Higher impact strength PHYSICAL · Low moisture absorption 0.93 Density, g/cm³ ISO 1183 • UHMW PE-1000 is Self Lubricating Melt index MFR 230/5, g/10 min ISO 1133 1.5 · Shatter resistant · Abrasion and corrosion resistant MECHANICAL Yield stress, N/ mm2 ISO 527 ; 50 mm / min 50 **APPLICATIONS:** Elongation at yield stress, % ISO 527 : 50 mm / min 9 • Star wheels, sprockets and conveyor Breaking stress, N/ mm2 ISO 527 ; 50 mm / min 55 tracks ISO 527 ; 50 mm / min Elongation at break (yieldpoint), % > 50 Bushings, bearings and rollers, skid • Modulus of elasticity (tensile), N/ mm2 ISO 527 2,000 plates Shore hardness D, 3 sec value DIN 53505 78 • Filter press plates, gears Notched impact strength, mJ/ mm2 ISO 179 160 • Vent and filter plates Resistance to wear, mg/ 1000 cycle DIN EN ISO 9352 • Wear strips and guides rails 5 - 10(1 kg, CS17) · Deflecting blades Coefficient of friction - dynamic **ASTM D1894** 0.20 - 0.35**MATERIAL AVAILABILITY:** THERMAL 6mm to 250mm Rod Vicat softening point VST, °C DIN ISO 306/B 135 Sheet: 2mm to 150mm Cristalline melting range, °C ISO 3146 172 Coefficient of linear expansion **GRADES / COLOURS:** between 23° and 80°C, 1/K DIN 53752 13 * 10^-5 PE-1000 (UHMW): Natural, Green, Thermal conductivity at 23°C, W/(m x K) DIN 52612 1.19 Black Specific heat, kJ/kg K DIN 52612 0.96 Thermal form stability max., °C 150 from -40 Thermal form stability, °C up to 120 ELECTRICAL >1.5 * 10^14 Volume resistivity, OHM x cm VDE 0303/3 VDE 0303/3 >10^13 Surface resistance, OHM Dielectric strength, kV/ mm VDE 0303/2 63

Polyethylene 300 EL

CHARACTERISTICS:Electrically conductiveGood fatigue and wear resistance	Polyethylene 300 EL General Properties	Test Method	Typical Values
 Good fatigue and wear resistance Higher impact strength Low moisture absorption PE-300 EL is Self Lubricating Shatter resistant Abrasion and corrosion resistant APPLICATIONS: Electrical engineering Electronics equipment Automotive engineering Conductive functional parts Guide rails, chain guides MATERIAL AVAILABILITY: Rod: 6mm to 150mm Sheet: 3mm to 100mm GRADES / COLOURS: PE-300 EL (HD): Natural, Green, Black	 PHYSICAL Molecular weight Density, g/cm³ Melt index MFR 190/2.16, g/10 min Melt index MFR 190/5, g/10 min Melt index MFR 190/21.6, g/10 min Melt index MFR 230/5, g/10 min MECHANICAL Yield stress, N/ mm2 Elongation at yield stress, % Breaking stress, N/ mm2 Elongation at break (yieldpoint), % Modulus of elasticity (tensile), N/ mm2 Ball indentation hardness, 30 sec value, N/mm2 Shore hardness D, 3 sec value Shore hardness D, 15 sec value Impact strength, mJ/ mm2 Notched impact strength with 15°V-notch, mJ/ mm2 Wear by the sand-slurry-method THERMAL Vicat softening point VST, °C Cristalline melting range, °C Coefficient of linear expansion between 23° and 80°C, 1/K Thermal conductivity at 23°C, W/(m x K) ELECTRICAL Volume resistivity, OHM x cm Surface resistance, OHM 		$ \begin{array}{c} -\\ 0.99\\ -\\ 0.15\\7\\-\\ 25\\>=8\\-\\ -\\ =700\\>50\\65\\63\\-\\6\\-\\-\\-\\87\\130\\2 \times 10^{-4}\\0.41\\<=10^{5}\\<=10^{4}\end{array} $
	Dielectric strength, kV/ mm Arc resistance, grade	VDE 0303/2 VDE 0303/5	_

Polyethylene 1000 Anti-Static

CHARACTERISTICS:

- Surface resistivity range of 10⁵ to 10⁹ (ohm) anti-static
- Protects against build-up electrical charge
- Permanent in static dissipation without periodic re-coating
- Good fatigue and wear resistance
- Low moisture absorption
- PE-1000 AST (UHMW) is Self Lubricating

APPLICATIONS:

- Widely used in clean room by semi-conductor, electronic, micro-manufacturing
- Pharmaceutical and biomedical industries
- Assembly conveyor components
- Guide rails, robotics parts
- Bearings, chain guides
- Transfers plates, wear strips

MATERIAL AVAILABILITY:

Rod: 6mm to 150mm Sheet: 2mm to 100mm

GRADES / COLOURS:

Polyethylene 1000 AST (UHMW): Natural, Green, Black

Test Method	Typical Values
_	5 Mill.
ISO 1183	0.96
	-
	_
	_
ISO 1133	-
ISO 527 : 50 mm / min	>= 17
	>= 8
	>= 30
-	> 50
,	>= 800
DIN ISO 2039/1	38
DIN 53505	_
DIN 53505	_
DIN 53453	without break
ISO 179	without break
150 170	
	-
internal test Methode	110
DIN ISO 306/B	76
ISO 3146	130 - 135
DIN 53752	2 x 10^-4
DIN 52612	0.40
VDE 0303/3	< 10^6
VDE 0303/3	< 10^9
VDE 0303/2	_
VDE 0303/5	-
	Method ISO 1183 ISO 1133 ISO 527 ; 50 mm / min ISO 179 ISO 179 ISO 179 ISO 179 ISO 306/B ISO 3146 DIN 53752 DIN 52612 VDE 0303/3 VDE 0303/3 VDE 0303/3

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Polyproplene

CHARACTERISTICS:

- Light in weight
- Has a low moisture absorption rate
- Semi-rigid material, ideal for the transfer of hot liquids or gases
- Excellent resistance to acids and alkalines
- Resists stress cracking
- Low moisture absorption

APPLICATIONS:

- Sinks & ducts
- Plating barrels & tanks
- Filter press plates
- Pump components & housings

MATERIAL AVAILABILITY:

Rod:	6mm to 200mm
Sheet:	2mm to 50mm

GRADES / COLOURS:

Polypropylene	
Homopolymer:	Grey, Natural, Off-
	white
Polypropylene	
Co-Polymer:	Grey, Natural, Off-
	white

Polyproplene General Properties	Test Method	Typical Values		
PHYSICAL				
Molecular weight	_	_		
Density, g/cm ³	ISO 1183	0.92		
Melt index MFR 190/2.16, g/10 min	ISO 1133	_		
Melt index MFR 190/5, g/10 min	ISO 1133	0.6		
Melt index MFR 190/21.6, g/10 min	ISO 1133	_		
Melt index MFR 230/5, g/10 min	ISO 1133	1.2		
MECHANICAL				
Yield stress, N/ mm2	ISO 527 ; 50 mm / min	30		
Elongation at yield stress, %	ISO 527 ; 50 mm / min	>= 8		
Breaking stress, N/ mm2	ISO 527 ; 50 mm / min	_		
Elongation at break (yieldpoint), %	ISO 527 ; 50 mm / min	> 50		
Modulus of elasticity (tensile), N/ mm2	ISO 527	>= 950		
Ball indentation hardness,				
30 sec value, N/mm2	DIN ISO 2039/1	67		
Shore hardness D, 3 sec value	DIN 53505	70		
Shore hardness D, 15 sec value	DIN 53505	68		
Impact strength, mJ/ mm2	DIN 53453	_		
Notched impact strength, mJ/ mm2	ISO 179	11		
Notched impact strength with				
15°V-notch, mJ/ mm2	ISO 179	_		
Wear by the sand-slurry-method	internal test Methode	440		
THERMAL				
Vicat softening point VST, °C	DIN ISO 306/B	90		
Cristalline melting range, °C	ISO 3146	165		
Coefficient of linear expansion				
between 23° and 80°C, 1/K	DIN 53752	1 – 2 x 10^-4		
Thermal conductivity at 23°C, W/(m x K)	DIN 52612	0.22		
ELECTRICAL				
Volume resistivity, OHM x cm	VDE 0303/3	>10^16		
Surface resistance, OHM	VDE 0303/3	>10^13		
Dielectric strength, kV/ mm	VDE 0303/2	-		
Arc resistance, grade	VDE 0303/5	L4		

Polyslick 100/300

Virgin / UV Stabilized UHMW

CHARACTERISTICS:	Polyslick 100/300	ASTM or	Typical
High Abrasion Resistance	General Properties	UL Test	Values
Low Coefficient of Friction			
Chemical Resistant	PHYSICAL		
• Can be cut, shaped, drilled, turned and	Density, g/cm ³	D792	0.926 - 0.934
tapped "on-site" with ordinary woodworking tools	Water absorption, %	D570	Nil
Use in food and pharmaceutical			
processing industries by the USDA	MECHANICAL		
and FDA	Tensile strength at yield, MPa (ksi)	D638	21 (3.1)
• Outdoor stability and wear resistance	Tensile strength at break, MPa (ksi)	D638	48 (7)
with no detriment to frictional	Elongation at break, %	D638	350
coefficient	Young's modulus, GPa (106 psi)		
• Polyslick-300: UV Stabilized UHMW	at 23°C (73°F)	D638	0.69 (0.1)
outdoor applications up to 5 times	at -269°C (-450°F)	D638	2.97 (0.43)
longer	Izod impat strength, kJ/m (ft-lb/in.) notch		
6	at 23°C (73°F)	D256(a)	1.6 (30)
APPLICATIONS:	at -40°C (-40°F)	D256(a)	1.1 (21)
Dock bumpers	Hardness Shore D	D2240	62 - 66
Protective linings	Abrasion resistance	-	100
Conveyor parts	Relative solution viscosity, dl/g	D4020	2.3 - 3.5
Bottling wheels			1 6 7
Bushings and Bearings	(a) Samples had two notches $(15^{\circ}+, -1/2^{\circ})$ on oppo	osite sides to a dep	oth of 5mm
Machined parts	(0.20 in)		
Wear strips		I	1
	THERMAL	D 1 · ·	120 142
MATERIAL AVAILABILITY:	Crystalline melting range, powder, °C, (°F)	Polarizing	138 - 142
Rod: 1/4" to 10"	C_{1}	Microscope	(280 - 289)
Sheet: 1/16" to 6"	Coefficient of liner expansion, 10 ⁻⁴ /K at 20 to 100°C (68 to 212°F)	DCOC	2
	at -200 to -100°C (-330 to -150°F)	D696 D696	2 0.5
GRADES / COLOURS:	at -200 to -100 C (-330 to -130 F)	D090	0.5
Polyslick 100/300: Natural, Green,	ELECTRICAL		
Black	Volume resistivity, Ωm	D257	>5x10 ¹⁴
	Dielectric strength, KV/cm (V/mil)	D237 D149	900 (2300)
	Dielectric constant	D149 D150	2.3
	Dissipation factor, x 10^{-4}	D150	2.5
	at 50 Hz	D150	1.9
	at 1 Hz	D150	0.5
	at 0.1 Hz	D150	2.5
	Surface sensitivity, Ω	D100	2.5
	Polyslick-100, Black UHMW	D257	>10 ¹⁴
	Polyslick-300, UV Stabilized UHMW	D257	10 ¹³
	,,,		- 0

Polyslick 100/300 is the registered trademark of Polymer Industries.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Polyslick 501/502

Anti-Static / Conductive UHMW

- High Abrasion Resistance Low Coefficient of Friction Chemical Resistant
- Can be cut, shaped, drilled, turned and tapped "on-site" with ordinary woodworking tools

Polyslick-501: Anti-Static UHMW

- Eliminates the build up of static electricity in the material
- Build up of static electricity due to sliding friction is problematic.

Polyslick-502: Conductive UHMW

- Enables the material to conduct electricity
- Available in black only.

APPLICATIONS:

- Dock bumpers
- Protective linings
- Conveyor parts
- Bottling wheels
- Bushings and Bearings
- Machined parts
- Wear strips

MATERIAL AVAILABILITY:

Rod: 1/4" to 10" Sheet: 1/16" to 6"

GRADES / COLOURS:

Polyslick 501: Natural, Green, Black Polyslick 502: Black

PHYSICAL Density, g/cm ³ D792 D570 $0.926 - 0.934$ Water absorption, % D570 MECHANICAL Tensile strength at yield, MPa (ksi) D638 D638 21 (3.1) Tensile strength at break, MPa (ksi) D638 D638 48 (7) Elongation at break, % D638 350 Young's modulus, GPa (106 psi) at 23°C (73°F) D638 D638 0.69 (0.1) Izod impat strength, kJ/m (ft-lb/in.) notch at 23°C (73°F) D638 D256(a) 1.6 (30) Izod impat strength, kJ/m (ft-lb/in.) notch at -40°C (-40°F) D256(a) 1.1 (21)
Water absorption, $\%$ D570 MECHANICAL D638 21 (3.1) Tensile strength at yield, MPa (ksi) D638 48 (7) Elongation at break, MPa (ksi) D638 48 (7) Elongation at break, $\%$ D638 350 Young's modulus, GPa (106 psi) at 23°C (73°F) D638 0.69 (0.1) at -269°C (-450°F) D638 2.97 (0.43) Izod impat strength, kJ/m (ft-lb/in.) notch at 23°C (73°F) D256(a) 1.6 (30) at -40°C (-40°F) D256(a) 1.1 (21)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Tensile strength at break, MPa (ksi)D63848 (7)Elongation at break, %D638350Young's modulus, GPa (106 psi)D6380.69 (0.1)at 23°C (73°F)D6380.69 (0.1)at -269°C (-450°F)D6382.97 (0.43)Izod impat strength, kJ/m (ft-lb/in.) notchD256(a)1.6 (30)at -40°C (-40°F)D256(a)1.1 (21)
Tensile strength at break, MPa (ksi)D63848 (7)Elongation at break, %D638350Young's modulus, GPa (106 psi)D6380.69 (0.1)at 23°C (73°F)D6382.97 (0.43)Izod impat strength, kJ/m (ft-lb/in.) notchD256(a)1.6 (30)at -40°C (-40°F)D256(a)1.1 (21)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccc} at 23^{\circ}C & (73^{\circ}F) & D638 & 0.69 & (0.1) \\ at -269^{\circ}C & (-450^{\circ}F) & D638 & 2.97 & (0.43) \\ Izod impat strength, kJ/m & (ft-lb/in.) notch \\ at 23^{\circ}C & (73^{\circ}F) & D256(a) & 1.6 & (30) \\ at -40^{\circ}C & (-40^{\circ}F) & D256(a) & 1.1 & (21) \\ \end{array} $
at -269°C (-450°F) D638 2.97 (0.43) Izod impat strength, kJ/m (ft-lb/in.) notch D256(a) 1.6 (30) at -40°C (-40°F) D256(a) 1.1 (21)
Izod impat strength, kJ/m (ft-lb/in.) notch D256(a) 1.6 (30) at -40°C (-40°F) D256(a) 1.1 (21)
at 23°C (73°F) D256(a) 1.6 (30) at -40°C (-40°F) D256(a) 1.1 (21)
at -40°C (-40°F) D256(a) 1.1 (21)
Hardness Shore DD224062 -□66
Abrasion resistance – 100
Relative solution viscosity, dl/gD40202.3 - 3.5
 (a) Samples had two notches (15°+, -1/2°) on opposite sides to a depth of 5mm (0.20 in)
THERMAL
Crystalline melting range, powder, °C, (°F) Polarizing 138 – 142
Microscope (280 – 289)
Coefficient of liner expansion, 10 ⁻⁴ /K
at 20 to 100°C (68 to 212°F) D696 2
at -200 to -100°C (-330 to -150°F) D696 0.5
ELECTRICAL
Volume resistivity, Ωm D257 > 5 x 10 ¹⁴
Volume resistivity, s2mD257> 5 x 10Dielectric strength, KV/cm (V/mil)D149900 (2,300)
Dielectric constant D150 2.3
Dissipation factor, x 10-4
at 50 Hz D150 1.9
at 1 Hz D150 0.5
at 0.1 Hz D150 2.5
Surface sensitivity, Ω
Polyslick-501, Anti-Static UHMW D257 10 ⁵
Polyslick-502, Conductive UHMW D257 10 ³

Polyslick 501/502 is the registered trademark of Polymer Industries.

Polyurethane

CHARACTERISTICS:

- Elasticity of rubber combined with the toughness and durability
- Abrasion resistance
- Oil and solvent resistance
- Load bearing capacity
- Tear resistance
- Weather resistance

APPLICATIONS:

- Wear pads
- Metal-forming pads
- Sound dampening pads
- Prototype machined parts
- Bumper pads
- Rollers
- Roller covers

MATERIAL AVAILABILITY:

Rod: 1/4" to 6" Sheet: 1/32" to 2"

GRADES / COLOURS:

Polyurethane: Transparent yellow to Rainbow

Polyurethane General Properties	ASTM or UL Test	MP300	MP600	MP750	MP850	MP900	MP950	MP160	MP175
MECHANICAL									
Tensile Properties									
Break, psi	D412	380	4,500	5,500	6,000	4,500	5,500	6,500	7,500
100% modulus, psi	D412	80	250	350	600	1,100	1,800	3,000	5,500
300% modulus, psi	D412	170	600	1,000	1,500	2,100	4,000	6,500	-
Elongation, %	D412	515	500	500	500	450	320	300	225
Break Set, %	D412	-	5	10	10	10	10	15	—
Modulus of Elasticity, psi	D638	-	5	15	25	50	90	125	-
Compression Properties									
(Shape factor 0.56)									
Deflection, psi @ 5%	D575	15	30	70	180	310	450	1,000	2,150
Deflection, psi @ 10%	D575	25	70	140	390	625	890	1,600	3,700
Deflection, psi @ 15%	D575	34	110	220	560	875	1,170	2,200	4,700
Deflection, psi @ 20%	D575	38	160	280	690	1125	1,400	3,000	6,000
Deflection, psi @ 25%	D575	44	220	330	800	1350	1,600	4,000	7,250
Compression Set, %									
Method A @ 70° C	D395	_	10	8	5	_	1	10	15
Method B @ 70° C	D395	9	10	15	25	30	40	50	_
Durometer, Shore ± 5	D2240	30A	60A	75A	85A	90A	95A	60D	75D
Tear Properties, pli, Die C	D624	90	200	250	400	400	450	700	850
Abrasion Resistance, Tabor									
H18 @ 1000gm. load, mg.									
loss per 1000 cycles	C-501		30	40	40	30	40	80	450
Specific Gravity (g/cm ³)	D792	1.20	1.26	1.26	1.26	1.10	1.15	1.18	430 1.18
1 1 1	D/92								
Base		Ester	Ester	Ester	Ether	Ether	Ether	Ether	Ester

126 Genting Lane, Singapore 349576

POM-AS

Polyoxymethylene

CHARACTERISTICS:

- Antistatic
- Electro-static Dissipation
- Carbon free
- Surface resistivity $10^9 10^{10}$ ohms
- Resistant to cleaning agents
- Rigid, strong, tough
- Easily machined

APPLICATIONS:

- Semiconductor technology
- Electrical protection
- Disk drive industry
- · Clean room technology
- Computer technology
- Business machines
- Chip containers
- Chip magazines

MATERIAL AVAILABILITY:

Rod:	6mm to 200mm
Sheet:	6mm to 100mm

GRADES / COLOURS:

POM-AS: Ivory/ Natural

POM-AS	Test	Typical
General Properties	Method	Values
PHYSICAL		
Specific gravity (g/cm ³)	ISO 1183	1.33
Water absorption, %	DIN 53495	0.3
Chemical resistance	_	_
Maximum permissible service temp.		
(no stronger mechanical stress involved)	_	_
Upper temperature limit, °C	-	110
Lower temperature limit, °C	-	-50
MECHANICAL		
Tensile strength at yield, MPa	ISO 527	45
Elongation at yield, %	ISO 527	10
Tensile strength at break, MPa	ISO 527	_
Elongation at break, %	ISO 527	_
Impact strength, kJ/m ²	ISO 179	50
Notch Impact strength, kJ/m ²	ISO 179	4
Ball indentation / Rockwell hardness, MPa	ISO 2039-1	100
Shore-D	DIN 53505	_
Flexural strength, MPa	ISO 178	52
Modulus of elasticity, MPa	ISO 527	1,650
THERMAL		
Vicat softening point, °C VST/B/50 VST/A/50	ISO 306	130
Heat deflection temperature, °C HDT/B HDT/A	ISO 75	- 71
Coeff. of linear thermal expansion, K ⁻¹ * 10 ⁻⁴	DIN 53752	1.3
Thermal conductivity at 20°C, W/(m * K)	DIN 52612	-
ELECTRICAL		
Volume resistivity, $\Omega * cm$	VDE 0303	≤10 ¹⁰
Surface resistivity, Ω		≤10 ¹⁰
Dielectric constant at 1MHz		
Dielectric loss factor at 1MHz	DIN 53483	_
Dielectric strength, kV/ mm	VDE 0303	_
Tracking resistance	DIN 53480	-
ADDITIONAL DATA		
Bond ability		fair
Friction coefficient	DIN 53375	_
Flammability	UL 94	HB
UV stabilisation	-	fair
		1411

A LEADER IN CUSTOMER SERVICE

POM-ESD

Polyoxymethylene

CHARACTERISTICS:

- Electrically conductive
- Rigid, strong, tough
- Resistant to numerous solvents
- Resistant to cleaning agents
- Wear resistant
- Easily machined
- UV and weather resistant

APPLICATIONS:

- Electrical protection
- Mechanical engineering
- Automotive engineering
- Electrical engineering
- Electronics
- Electrically conductive functional parts

MATERIAL AVAILABILITY:

Rod:4mm to 100mmSheet:5mm to 80mm

GRADES / COLOURS:

POM-ESD: Black

POM-ESD General Properties	Test Method	Typical Values
PHYSICAL		
Specific gravity (g/cm ³)	ISO 1183	1.4
Water absorption, %	DIN 53495	0.25 - 2.8
Chemical resistance	DIN 53476	_
Maximum permissible service temp.		
(no stronger mechanical stress involved)		
Upper temperature limit, °C	-	80
Lower temperature limit, °C	_	-50
MECHANICAL		
Tensile strength at yield, MPa	ISO 527	50
Elongation at yield, %	ISO 527	_
Tensile strength at break, MPa	ISO 527	_
Elongation at break, %	ISO 527	10
Impact strength, kJ/m ²	ISO 179	50
Notch Impact strength, kJ/m ²	ISO 179	4
Ball indentation hardness / Rockwell, MPa	ISO 2039-1	100
Flexural strength, MPa	ISO 178	_
Modulus of elasticity, MPa	ISO 527	2,300
THERMAL		
Vicat softening point, °C VST/B/50 VST/A/50	ISO 306	130
Heat deflection temperature, °C HDT/B HDT/A	ISO 75	- 89
Coeff. of linear thermal expansion, K ⁻¹ x 10 ⁻⁴	DIN 53752	1.3
Thermal conductivity at 20°C, W/(m * K)	DIN 52612	-
ELECTRICAL		
Volume resistivity, Ω x cm	VDE 0303	106
Surface resistivity, Ω		10 ³
Dielectric constant at 1MHz	DIN 53483	_
Dielectric loss factor at 1MHz	DIN 53483	_
Dielectric strength, kV/ mm	VDE 0303	_
Tracking resistance	DIN 53480	-
ADDITIONAL DATA		
Bond ability		+
Physiol. indifference	EEC 90/128	+
according	FDA	о
Friction coefficient	DIN 53375	0.35
Flammability	UL 94	HB
UV stabilisation	_	_

PVC & CPVC (PolyVinyl Chloride & Chlorinated PolyVinyl Chloride)

CHARACTERISTICS:

- Excellent corrosion and weather resistance
- Self-extinguishing per UL flammability tests
- PVC can be welded, machined, bent and shaped readily
- CPVC can be machining, welding, and forming
- Excellent corrosion resistance at elevated temperatures
- CPVC temperatures up to 200°F (93°C)

APPLICATIONS:

- Chemical resistant tanks and lining
- Scrubbers
- Tanks ventilation systems
- Pump and valve component
- Wet process equipment

MATERIAL AVAILABILITY:

Rod: 1/4" to 12" Sheet: 1/32" to 3"

GRADES / COLOURS:

PVC: Light Grey CPVC: Dark Grey

PVC & CPVC General Properties	ASTM or UL Test	Typical Values PVC CPV	
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.41	1.52
Water Absorption, 24 hrs (%)	D570	0	0.04
MECHANICAL			
Tensile Strength (psi)	D638	7,500	8,200
Tensile Modulus (psi)	D638	411,000	430,000
Tensile Elongation at Break (%)	D638	_	27
Flexural Strength (psi)	D790	12,800	15,000
Flexural Modulus (psi)	D790	481,000	410,000
Hardness Rockwell R	D785	115	121
IZOD Notched Impact (ft-lb/in)	D256	1.0	1.6
THERMAL			
Coeff. of Linear Thermal Expansion			
(x 10 ⁻⁵ in./in./°F)	D696	6.1	3.7
Heat Deflection Temp (°F / °C) at 264 psi	D648	176 / 80	217 / 103
Melting Temp (°F / °C)	D3418	n.a.	n.a.
Max Operating Temp (°F / °C)	_	140 / 60	200 / 93
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	0.90	0.95
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		3.1	3.3
Flammability Rating	UL94	V-O	V-O
ELECTRICAL			
Dielectric Strength (V/mil) short time, 1/8" thick	D149	544	1250
Dielectric Constant at 60 Hz	D150	3.2	3.7
Dissipation Factor at 60 Hz	D150	0.0096	_
Volume Resistivity (ohm-cm) at 50% RH	D257	5.4 x 10 ¹⁵	3.4 x 10 ¹⁵

PVC-300 / PVC-350

(Anti-Static)

CHARACTERISTICS:

- Electrostatic decay in less than 0.05 second per Federal Test Standard 101C, Method 4046.1 (rapid dissipation without arcing)
- Ideal surface resistivity without need for ionizers or coatings
- Permanence in static dissipation performance without periodic recoating
- Humidity-independent static charge control
- Superior fabrication characteristics offer simplified design and installation
- Superior chemical resistance with reduced risk of solvent attack

APPLICATIONS:

- Widely used in clean rooms by the semiconductor, electronic, micro-manufacturing, pharmaceutical, and biomedical industries
- Transparent covers, windows
- Panels for electronic equipment, assembly machines
- Cabinets and boxes
- Process instrumentation enclosures.

MATERIAL AVAILABILITY:

Sheet: 1/8", 3/16", 1/4", 3/8" and 1/2" Size: 4ft to 8ft

GRADES / COLOURS:

PVC- 300^{TM} : Clear and tinted PVC- 350^{TM} : Clear and tinted

PVC-300 / PVC-350			
General Properties	UL Test	PVC-300™ Flat Sheet	PVC-350™ Heat-Formable
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.38	1.38
MECHANICAL			
Tensile Strength (psi)	D638	10,200	10,200
Tensile Modulus (psi)	D638	425,000	425,000
Tensile Elongation at Break (%)	D638	36	36
Flexural Strength (psi)	D790	14,000	14,000
Flexural Modulus (psi)	D790	425,000	425,000
Compressive Strength (psi)	D695	12,000	12,000
IZOD Impact Notched (ft-lb/in)	D256	0.52	0.52
THERMAL			
Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)	D696	7.0	7.0
Heat Deflection Temp (°F / °C) at 264 psi	D648	138 / 59	138 / 59
Vicat Softening Temp (°F / °C)	D3418	152 / 67	152 / 67
Max Operating Temp (°F / °C)	-	130 / 54	130 / 54
Thermal Conductivity (BTU-in/ft ² -hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C)	C177	_	_
Flammability Rating	UL94	V-0	V-0
ELECTRICAL			
Surface Resistivity (ohms/square) at 50% RH	D257	$10^{6} - 10^{8}$	$10^{6} - 10^{8}$
OPTICAL			
3mm Transparent Clear Transmittance, Total (%)	D1003	69	69
Haze (%)	D1003	6	6

 $PVC-300^{\text{TM}}$ and $PVC-350^{\text{TM}}$ are the registered trademark of Scicron Technologies.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

Radel[®] A

PES Polyethersulfone

CHARACTERISTICS:

- Excellent mechanical strength
- Outstanding heat resistance
- Exceptional resistance to environment forces
- Inherent flame resistance with low smoke evolution
- High mechanical strength
- High dielectric strength and stabilityHigh dissipation factor over a wide range
- of frequencies
- Excellent machinability and finishing characteristics
- Natural Grade in FDS, NSF, and UL listed

APPLICATIONS:

• Medical, electronic/electrical, microwave, automotive, and aircraft industries

MATERIAL AVAILABILITY:

Rod: 3/8" to 6" Sheet: 0.03" to 4"

GRADES / COLOURS:

Radel[®] A: Amber transparent & opaque

Radel [®] A Polyethersulfone General Properties	ASTM or UL Test	Radel [®] A unfilled	Radel [®] A 30% glass filled
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.37	1.58
Water Absorption, 24 hrs (%)	D570	0.54	0.39
MECHANICAL			
Tensile Strength (psi)	D638	12,200	18,900
Tensile Modulus (psi)	D638	385,000	825,000
Tensile Elongation at Yield (%)	D638	6.5	1.9
Flexural Strength (psi)	D790	16,100	23,500
Flexural Modulus (psi)	D790	420,000	950,000
Compressive Strength (psi)	D695	14,500	25,600
Compressive Modulus (psi)	D695	388,00	1,119,000
Hardness, Rockwell	D785	M88/R127	M80/R124
IZOD Notched Impact (ft-lb/in)	D256	1.6	1.4
THERMAL			
Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F)	D696	2.7	1.7
Heat Deflection Temp (°F / °C) at 264 psi	D648	400 / 204	420 / 215
Melting Temp (°F / °C)	D3418	_ / _	_/_
Max Operating Temp (°F / °C)	_	320 / 160	320 / 160
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	1.13	1.35
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		3.89	4.65
Flammability Rating	UL94	V0	V0
ELECTRICAL			
Dielectric Strength (V/mil) short time, 1/8" thick	D149	380	440
Dielectric Constant at 1 KHz	D150	3.5	4.1
Dissipation Factor at 1 KHz	D150	0.0022	0.0018
Volume Resistivity (ohm-cm) at 50% RH	D257	1.7 x 10 ¹⁵	> 10 ¹⁶

Radel[®] A is the registered trademarks of Solvay Advanced Polymers.

Radel[®] R

• Resists common acids and bases APPLICATIONS: • Used in sterilization trays, dental, surgical instrument handles, pharmaceutics industries • Fluid handling coupling • Radel [®] R is USP Class VI compliant. MATERIAL AVAILABILITY: Rod: 0.25" to 6" Sheet: 0.25" to 3" GRADES / COLOURS: Radel [®] R (PPSU): Black FIERMAL Coeff. of Linear Thermal Expansion $(x 10^{-5} in./in.)^{\circ}F)$ Heat Deflection Temp ($^{\circ}F$ / $^{\circ}C$) at 264 psi Glass Transition Temp ($^{\circ}F$ / $^{\circ}C$)	CHARACTERISTICS:Superior hydrolysis resistanceExcellent choice for medical devices	Radel [®] R General Properties	ASTM or UL Test	Typical Values
Max Operating Temp (\mathbf{F} / \mathbf{C}) $ 3007/149$ Thermal Conductivity (BTU-in/ft²-hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C)C1772.4Flammability RatingUL94V-OELECTRICAL Dielectric Strength (V/mil) short time, 1/8" thickD149360Dielectric Constant at 1 MHzD1503.44Dissipation Factor at 1 MHzD1500.0017Volume Resistivity (ohm-cm) at 50% RHD257> 10 ¹⁵	 Resists common acids and bases APPLICATIONS: Used in sterilization trays, dental, surgical instrument handles, pharmaceutics industries Fluid handling coupling Radel[®] R is USP Class VI compliant. MATERIAL AVAILABILITY: Rod: 0.25" to 6" Sheet: 0.25" to 3" GRADES / COLOURS: 	Specific Gravity (g/cm ³) Water Absorption, 24 hrs (%) MECHANICAL Tensile Strength (psi) Tensile Modulus (psi) Tensile Elongation at Yield (%) Flexural Strength (psi) Flexural Modulus (psi) Compressive Strength (psi) Compressive Modulus (psi) Hardness, Rockwell IZOD Notched Impact (ft-lb/in) THERMAL Coeff. of Linear Thermal Expansion (x 10 ⁻⁵ in./in./°F) Heat Deflection Temp (°F / °C) at 264 psi Glass Transition Temp (°F / °C) Max Operating Temp (°F / °C) Thermal Conductivity (BTU-in/ft ² -hr-°F) (x 10 ⁻⁴ cal/cm-sec-°C) Flammability Rating ELECTRICAL Dielectric Strength (V/mil) short time, 1/8" thick Dielectric Constant at 1 MHz	D570 D638 D638 D638 D790 D790 D695 D695 D785 D256 D696 D696 D648 D3418 - C177 UL94 D149 D150 D150	0.4 11,000 340,000 30 15,500 345,000 13,400 280,000 M80 / R120 2.5 3.10 405 / 207 428 / 220 300 / 149 2.4 8.3 V-O 360 3.44 0.0017

Radel[®] R and Udel[®] are registered trademarks of Solvay Advanced Polymers.

Rulon[®] Filled PTFE

CHARACTERISTICS:

- Reinforced proprietary PTFE
- High compressive strengths, low coefficient of friction
- Excellent abrasion
- Running without lubrication
- High wear resistance

APPLICATIONS:

- Sleeve, flange or thrust bearing
- Bearing and seal applications
- Bushings, Guides, Rollers, Seals, Sleeves & Thrust washers

MATERIAL AVAILABILITY:

Rod: 0.25" to 6" Sheet: 1/6" to 3"

GRADES / COLOURS:

Rulon [®] LR:	Maroon
Rulon [®] J:	Dull gold
Rulon [®] 641:	White

Rulon [®] Filled PTFE	ASTM or		Typical Values	
General Properties	UL Test	Rulon [®] LR	Rulon [®] J	Rulon [®] 641
		(maroon)	(gold)	(white)
PHYSICAL				
Specific Gravity (g/cm ³)	D792	2.27	1.95	2.25
Hardness, Shore D	D2240	60 - 75	60	60
Water Absorption, 24 hrs (%)	D570	0	0	0
MECHANICAL				
Tensile Strength (psi)	D1457	1,500	2,000	2,000
Tensile Elongation at Yield (%)	D1457	150	180	175
IZOD Notched Impact (ft-lb/in)	D256	6.0	-	-
THERMAL				
Coeff. of Linear Thermal Expansion				
(x 10 ⁻⁵ in./in./°F)	D696	varies	widely with tempe	erature
Thermal Conductivity (BTU-in/ft ² -hr-°F)	Cenco-Fitch	2.30	1.70	2.60
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		7.92	5.86	8.96
Flammability (in/min)	D635	None	None	None
ELECTRICAL				
Dielectric Strength (V/mil) short time, .08" thick	D149	400-500	200	_
Dielectric Constant at 1 MHz	D150	2.5	2.4	_
Dissipation Factor at 1 MHz	D150	0.003	0.001	_
Surface Resistivity (ohm-cm)at 50% RH	D257	$2 \ge 10^{13}$	6 x 10 ¹⁸	_
Volume Resistivity (ohm-cm)at 50% RH	D257	1 x 10 ¹⁵	8 x 10 ¹⁸	_
RECOMMENDED OPERATING LIMITS				
Maximum Load (psi)	-	1,000	1,000	1,000
Maximum Velocity with No Pressure (ft/min)	-	400	400	400
Maximum PV Rating (psi x ft/min)	-	10,000	10,000	10,000
Maximum Operating Temp (°F / °C)	-	500 / 260	500 / 260	500 / 260
Minimum Operating Temp (°F / °C)	-	-450 / -240	-450 / -240	-450 / -240
Minimum Mating Surface Hardness (Rockwell)	-	C35	B25	B25

Rulon[®] Filled PTFE is the registered trademark of the Furon Company

Ryton[®] PPS

(PolyPhenylene Sulfide)

CHARACTERISTICS:

- Retention of mechanical properties under continuous use up to 338°F (170°C)
- Excellent chemical resistance
- Good electrical insulator
- High mechanical strength
- Dimensional stability over wide variations of temperature and moisture
- · Creep resistance

APPLICATIONS:

• Automotive, electrical/electronic, industrial, mechanical, appliance and semiconductor industries.

MATERIAL AVAILABILITY:

Rod: 3/8" to 4" Sheet: 0.25" to 2"

GRADES / COLOURS:

Ryton[®] PPS Bearing: Off-white Ryton[®] PPS 40% Glass Filled: Grey

Ryton [®] PPS	[®] PPS ASTM or Typical Values		Values
General Properties	UL Test	40% Glass	Bearing
		Reinforced	Grade
PHYSICAL			
Specific Gravity (g/cm ³)	D792	1.70	1.55
Water Absorption, 24 hrs (%)	D570	0.02	0.02
MECHANICAL			
Tensile Strength (psi)	D638	13,000	10,000
Tensile Modulus (psi)	D638	730,000	800,000
Tensile Elongation at Break (%)	D638	2.0	1.5
Flexural Strength (psi)	D790	23,000	15,000
Flexural Modulus (psi)	D790	1,000,000	1,000,000
Compressive Strength (psi)	D695	24,000	15,000
Compressive Modulus (psi)	D695	1,300,000	800,000
Hardness, Rockwell	D785	M94 / R125	M93 / R126
IZOD Notched Impact (ft-lb/in)	D256	1.0	1.0
THERMAL			
Coeff. of Linear Thermal Expansion			
(x 10 ⁻⁵ in./in./°F)	D696	2.5	1.2
Heat Deflection Temp (°F / °C) at 264 psi	D648	490 / 254	490 / 254
Glass Transition Temp (°F / °C)	D3418	n.a.	n.a.
Max Operating Temp (°F / °C)	_	450 / 232	450 / 232
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	2.10	2.20
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		7.23	7.57
Flammability Rating	UL94	V-O	V-O
ELECTRICAL			
Dielectric Strength (V/mil) short time, 1/8" thick	D149	385	_
Dielectric Constant at 1 MHz	D150	_	_
Dissipation Factor at 1 MHz	D150	_	_
Volume Resistivity (ohm-cm)at 50% RH	D257	_	_

Ryton[®] PPS is the registered trademark of Chevron Phillips Chemical Company.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Semitron[®] ESd 225

Copolymer acetal, static dissipative, extruded

CHARACTERISTICS:	Semitron [®] ESd 225	ASTM or	Typical
Static dissipative properties	General Properties	UL Test	Values
throughout	- <u>1</u>	_	
 Resistivity in the range of 10¹⁰ to 10¹² Temperatures of 225°F (107°C) 	PHYSICAL		
without degradation	Specific Gravity (g/cm ³)	D792	1.33
Good wear resistance	Water Absorption Immersion, 24 hr., %	D570	2
APPLICATIONS:	MECHANICAL		
• Electrical discharge in operation is a	Tensile Strength, psi	D638	5,400
problem	Tensile Modulus, psi	D638	200,000
• Used for sensitive electronic	Elongation, %	D638	15
components including integrated	Flexural Strength, psi	D790	7,300
circuits, hard disk drives, circuit	Flexural Modulus, psi	D790	220,000
boards and wafer combs	Shear Strength, psi	D732	6,000
Handling in-process silicon wafer	Compressive Strength, psi	D695	8,000
Handling in process smeon water	Compressive Modulus, psi	D695	175,000
MATERIAL AVAILABILITY:	Hardness, Rockwell M	D785	50
Rod: 1/4" to 6"	Hardness, Rockwell R	D785	108
Sheet: 0.25" to 3"	Hardness, Durometer, Shore D Scale	D2240	76
Sheet. 0.23 to 5	Izod Impact (Notched), ft-lb/in	D256	1.5
	Coefficient of Friction, Dynamic	Dry vs. Steel,	
GRADES / COLOURS:		PTM55007	0.29
Semitron [®] ESd 225: Beige	Limiting PV, psi-fpm	PTM55007	2,000
	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	30
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.93
	Deflection Temperature 264 psi, °F	D648	225
	Melting Point (Crystalline) Peak, °F	D3418	320
	Continuous Service in Air (Max), °F	Without Load	180
	ELECTRICAL		
	Surface Resistance, Ohm/Sq	10^9 - 10^10 Ohm;	
	sarrade resolution, similar of	EOS/ESD S11.11	5E+09

Semitron[®] ESd 225 is the registered trademark of Quadrant Engineering Plastics Products.

SUPERFIX®

Semitron[®] ESd 410C (CM)

Polyetherimide, static dissipative, compression molded

CHARACTERISTICS:Static dissipative PolyEtherImideStatic dissipative properties	Semitron [®] ESd 410C (CM) General Properties	ASTM UL Test	Typical Values
 throughout Resistiveity in the range of 10⁴ to 10⁶ Used to temperatures of 410°F (210°C) without degradation 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., %	D792 D570	1.41 0.01
 APPLICATIONS: Electrical discharge in operation is a problem Used for sensitive electronic components including integrated circuits, hard disk drives and circuit boards Handling in-process silicon wafer Handling Trays MATERIAL AVAILABILITY: Rod: 1/8" to 1" Sheet: 3/8" to 2"	MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic	D638 D638 D638 D790 D790 D732 D695 D695 D785 D785 D785 D2240 D256 Dry vs. Steel, PTM55007	9,000 850,000 2 12,000 850,000 9,000 19,500 600,000 115 125 85 0.8 0.18
GRADES / COLOURS: Semitron [®] ESd 410C: Black & opaque	Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007 PTM55007	12,000 125
	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.18 410 428 338 2.45
	ELECTRICAL Surface Resistance, Ohm/Sq Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	10^4 - 10^6 Ohm; EOS/ESD S11.11 D150(2) D150(2)	100,000 3 0.0013

Semitron[®] ESd 410C is the registered trademark of Quadrant Engineering Plastics Products.

Semitron[®] ESd 420

Polyetherimide, static dissipative, compression molded

CHARACTERISTICS:Static dissipative properties throughout	Semitron [®] ESd 420 General Properties	ASTM or UL Test	Typical Values
 Resistivity in the range of 10⁶ to 10⁹ Used to temperatures of 420°F (215°C) without degradation 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., %	D792 D570	1.45 0.8
 APPLICATIONS: Electrical discharge in operation is a problem Used for sensitive electronic components including integrated circuits, hard disk drives and circuit boards Handling in-process silicon wafer Handling Trays MATERIAL AVAILABILITY: Rod: 1/8" to 1" Sheet: 3/8" to 2" GRADES / COLOURS: Semitron [®] ESd 420: Black	MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Izod Impact (Notched), ft-lb/in Coeff. of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D638 D638 D638 D790 D790 D732 D695 D695 D785 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	$9,500 \\ 550,000 \\ 2 \\ 14,500 \\ 525,000 \\ 7,300 \\ 16,500 \\ 350,000 \\ 87 \\ 1 \\ 0.2 \\ 25,000 \\ 50 \\ 1$
	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Surface Resistance, Ohm/Square	E831 (TMA) D648 D3418 Without Load 10^6 - 10^9 Ohm; EOS/ESD S11.11	0.32 420 205 340 1.6 5E+07

Semitron[®] ESd 420 is the registered trademark of Quadrant Engineering Plastics Products.

Semitron[®] ESd 520HR (CM)

Polyamide-imide, static dissipative, compression molded

CHARACTERISTICS:Static dissipative reinforced	Semitron [®] ESd 520HR (CM)	ASTM or UL Test	Typical Values
PolyAmide-Imide (Torlon [®])	General Properties	UL lest	values
 Static dissipative properties throughout 	PHYSICAL		
• Resistivity in the range of 10^{10} to 10^{12}	Specific Gravity (g/cm ³)	D792	1.58
• Temperatures of 520°F (270°C)	Water Absorption Immersion, 24 hr., %	D570	0.6
without degradationHigh structural strength	MECHANICAL		
Excellent dimensional stability	Tensile Strength, psi	D638	12,000
 Dielectric performance at high 	Tensile Modulus, psi	D638	800,000
voltages (>100V)	Elongation, %	D638	3
voltages (>100 v)	Flexural Strength, psi	D790	20,000
APPLICATIONS:	Flexural Modulus, psi	D790	850,000
	Shear Strength, psi	D732	12,600
• Sockets and contactors for test -	Compressive Strength, psi	D695	30,000
equipment	Compressive Modulus, psi	D695	600,000
Electronic device handling	Hardness, Rockwell M	D785	108
componentsIntegrated circuits, hard disk drives	Izod Impact (Notched), ft-lb/in	D256	0.8
and circuit boards	Coeff. of Friction, Dynamic	Dry vs. Steel,	
and circuit boards		PTM55007	0.24
	Limiting PV, psi-fpm	PTM55007	27,000
MATERIAL AVAILABILITY: Rod: 1/8" to 1"	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	300
Sheet: 3/8" to 2"	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.15
GRADES / COLOURS:	Deflection Temperature 264 psi, °F	D648	520
Semitron [®] ESd 520HR: Khaki Grey	Tg-Glass Transition (Amorphous), °F	D3418	527
	Continuous Service in Air (Max), °F	Without Load	500
	Thermal Conductivity, BTU-in/hr-ft ² -°F	.,	2.48
	ELECTRICAL		
	Surface Resistance, Ohm/Square	10^10 - 10^12 Ohm;	
		EOS/ESD S11.11	1E+11
	Dielectric Constant, 1 MHz	D150(2)	5.76
	Dissipation Factor, 1 MHz	D150(2)	1.82

Semitron[®] ESd 520HR is the registered trademark of Quadrant Engineering Plastics Products

Semitron[®] ESd 500HR (CM)

PTFE, mica-filled, static dissipative, compression molded

CHARACTERISTICS:Dielectric performance at high voltages (>100V)	Semitron [®] ESd 500HR (CM) General Properties	ASTM or UL Test	Typical Values
 Low frictional properties and dimensional stability Surface resistivity: 10¹⁰ - 10¹² Ω / sq Thermal performance to 500°F (260°C) Thermally insulative Very low coefficient of friction Broad chemical resistance 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % 	D792 D570 D638 D638 D638	2.3 0.03 1,500 250,000 50
 APPLICATIONS: Sockets and contactors for test - equipment Electronic device handling components Integrated circuits, hard disk drives and circuit boards Excellent choice for material handling applications MATERIAL AVAILABILITY: Rod: Not available Sheet: 0.25" to 2" 	Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-Ib/in Coeff. of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/Ib-ft-hr THERMAL Coeff. of Thermal Expansion, 10E-4/°F	D790 D790 D732 D695 D695 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007 PTM55007	2,200 $350,000$ $1,700$ $3,800$ $225,000$ 50 65 1 0.1 $6,000$ 30 0.57
GRADES / COLOURS: Semitron [®] ESd 500HR (CM) PTFE: White	Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F ELECTRICAL Surface Resistance, Ohm/Square	D648 D3418 Without Load 10^10 - 10^12 Ohm; EOS/ESD S11.11	210 621 500 1E+11

Semitron[®] ESd 500HR is the registered trademark of Quadrant Engineering Plastics Products

Sintimid 8000

Polytetrafluorethylen + Polyimid

CHARACTERISTICS:Good sliding propertiesVery good UV and weather resistance	Sintimid 8000 General Properties	DIN Standard	Typical Values
 Very good electrical insulation Flame retardent according to UL94 V-0 Very easily machined 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.85 0.5
 APPLICATIONS: Mechanical engineering Fittings Electrical engineering Cyrogenics 	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, %	DIN EN ISO 527 DIN EN ISO 527	15 200
 Food technology Medical technology MATERIAL AVAILABILITY: Rod: 6mm to 70mm	Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN 53 505 (Shore Härte D) DIN EN ISO 179 (Charpy)	65 n.b.
Sheet: 5mm to 80mm GRADES / COLOURS: Sintimid 8000: Light Brown	after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.15 – 0.20
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 765 DIN 53 765 DIN 52 612 DIN 53 765 DIN 53 752	327 -20 260 250 0.25 1 6
	ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94	DIN 53 483. IEC-250 DIN IEC 60093	2.3 10^18 V0

Sintimid 8000 is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

Sintimid PAI ESd

Polyamidimid

CHARACTERISTICS:

- High thermal and mechanical capacity
- Antistatic
- Wear resistant
- Very resistant to gamma radiation
- Inherent low flammability (UL94 V-O)
- Very creep resistant

APPLICATIONS:

- Chemical engineering
- Cryogenics
- Nuclear and vacuum technology
- Electrical engineering
- Aircraft and aerospace industries
- Mechanical engineering

MATERIAL AVAILABILITY:

Rod:6mm to 70mmSheet:5mm to 50mm

GRADES / COLOURS:

Sintimid PAI ESd: Black

PHYSICAL Density g/cm³DIN 53 479 DIN EN ISO 621.54Water absorption to equilibrium, %DIN EN ISO 622.1MECHANICAL Tensile strength at yield, MPa Elongation at break, %DIN EN ISO 527 DIN EN ISO 52785Elongation at break, %DIN EN ISO 527 DIN EN ISO 5274Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 4,50004,500Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mD2=0.6 m/s on steel. hardened and ground, µm/km93THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C short term long termDIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g, K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3ELECTRICAL Dielectric loss factor (106 Hz) Dielectric strength, kV/mm Resistance to trackingDIN IEC 6009310^9 - 10^A	Sintimid PAI ESd General Properties	DIN Standard	Typical Values
Water absorption to equilibrium, %DIN EN ISO 622.1 MECHANICAL rensile strength at yield, MPa Elongation at break, MPaDIN EN ISO 52785Elongation at break, %DIN EN ISO 5274Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 5274Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction 	PHYSICAL		
Water absorption to equilibrium, %DIN EN ISO 622.1 MECHANICAL rensile strength at yield, MPa Elongation at break, MPaDIN EN ISO 52785Elongation at break, %DIN EN ISO 5274Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 5274Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmDIN 53 505 (Shore Härte D)93 THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method B Max. service temperature, °C C HDT. Method B Max. service temperature, °C HDT. Method B Max. Service temperature	Density g/cm ³	DIN 53 479	1.54
Tensile strength at yield, MPa Elongation at yield, $\%$ Tensile strength at break, MPa Elongation at break, $\%$ Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmDIN 53 505 (Shore Häre D) 93 ASTM D 256 (Izod)93 21THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C C short term long termDIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^49 - 10^AION 50 Dielectric strength, kV/mmDIN IEC 6009310^49 - 10^A			2.1
Elongation at yield, % Tensile strength at break, MPa Elongation at break, %DIN EN ISO 527 DIN EN ISO 5274Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 527 DIN EN ISO 5274,500Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 527 DIN EN ISO 5274,500Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmASTM D 256 (Izod)21 THERMAL Crystalline melting point, °C Glass transition temperature, °C short term long termDIN 53 765340Max. service temperature, °C short term long termDIN 53 752320Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10 51 /KDIN 153 7523.3 ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN 1EC 60093 $10^{A9} - 10^{A}$	MECHANICAL		
Tensile strength at break, MPaDIN EN ISO 527Elongation at break, %DIN EN ISO 527Modulus of elasticity in tension, MPaDIN EN ISO 527Modulus of elasticity after flexural test, MpaDIN EN ISO 527HardnessDIN EN ISO 527Impact strength 23° C (Charpy), KJ/m²DIN EN ISO 505Creep rupture strength, MPaDIN 53 505 (Shore Harte D)after 1000 h with static loadDIN 53 505 (Izod)Time yield limit, MPaFor 1% elongation after 1000 hfor 1% elongation after 1000 hCo-efficient of frictionp = 0.05 N/mm2v=0.6 m/sASTM D 256 (Izod)on steel. hardened and groundWear, µm/kmWear, µm/kmDIN 53 765THERMALCrystalline melting point, °CGlass transition temperature, °CDIN 53 765short term320long term320Thermal conductivity (23° C), W/(K·m)Specific heat (23° C), J/g.KCoeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/KDIN 53 752Surface resistance, Ω Dielectric loss factor (106 Hz)Specific volume resistance, Ω^* cmSurface resistance, Ω Dielectric strength, kV/mm	Tensile strength at yield, MPa	DIN EN ISO 527	85
Elongation at break, %DIN EN ISO 5274Modulus of elasticity in tension, MPaDIN EN ISO 5274,500Modulus of elasticity after flexural test, MpaDIN EN ISO 17893HardnessDIN 53 505 (Shore Harte D)93Impact strength 23° C (Charpy), KJ/m²ASTM D 256 (Izod)21Creep rupture strength, MPafor 1% elongation after 1000 h256 (Izod)21Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/sASTM D 256 (Izod)21moteut, hardened and ground, wm/kmm/kmDIN 53 765340THERMALCrystalline melting point, °CDIN 53 765340Glass transition temperature, °C HDT. Method ABMax. service temperature, °C HDT. Method B300Max. service temperature, °C HDT. Method B300300Thermal conductivity (23° C), W/(K·m)DIN 53 7523.3ELECTRICALDielectric constant (106 Hz)DIN 53 7523.3Dielectric loss factor (106 Hz)DIN IEC 6009310^9 - 10^Dielectric strength, kV/mmDIN IEC 6009310^9 - 10^	Elongation at yield, %		
Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 527 DIN EN ISO 178 DIN 53 505 (Shore Hare D)4,500MardnessImpact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmDIN 53 505 (Shore Hare D) 93 ASTM D 256 (Izod)21THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 755340ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^49 - 10^4	Tensile strength at break, MPa	DIN EN ISO 527	
Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 178 DIN 53 505 (Shore Härte D) ASTM D 256 (Izod)93Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmDIN 53 505 (Shore Härte D) ASTM D 256 (Izod)93THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C C short term long termDIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω DIN IEC 6009310^9 – 10^ 10^9 – 10^	Elongation at break, %	DIN EN ISO 527	4
Modulus of elasticity after flexural test, Mpa HardnessDIN EN ISO 178 DIN 53 505 (Shore Härte D)93Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/km $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground, µm/kmDIN 53 76593THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C C short term long termDIN 53 765340StelELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω^{*} cm Surface resistance, Ω DIN 1EC 60093 $10^{\circ}9 - 10^{\wedge}$ DIN 1EC 60093 $10^{\circ}9 - 10^{\wedge}$	Modulus of elasticity in tension, MPa	DIN EN ISO 527	4,500
HardnessDIN 53 505 (Shore Härte D)93Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static loadDIN 53 505 (Shore Härte D)93Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmDIN 53 505 (Shore Härte D)93 THERMAL Crystalline melting point, °C Glass transition temperature, °C heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C C HDT. Method B Max. service temperature, °C C HDT. Method B Max. service temperature, °C Short term long termDIN 53 765340 ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω*cm Surface resistance, ΩDIN IEC 6009310^9 – 10^A		DIN EN ISO 178	
Impact strength 23° C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmASTM D 256 (Izod)21THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C short term long termDIN 53 765340BMAX 320 300THERTALL Crystalline melting point, °C Glass transition temperature, °C short term long termDIN 53 765340DIN 53 765340ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^9 – 10^A 10^9 – 10^A	•	DIN 53 505 (Shore Härte D)	93
Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/km $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground, µm/kmDIN 53 765340THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C KDT. Method B Max. service temperature, °C Short term long term320 300Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^9 – 10^A 10^9 – 10^A	Impact strength 23° C (Charpy), KJ/m ²		21
Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/kmImage: Constant of Constant (Constant (Const			
for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/km p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground, µm/km THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C G short term long term Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω*cm Surface resistance, Ω DIN IEC 60093 10^9 – 10^A			
for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground Wear, µm/km p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground, µm/km THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C G short term long term Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω*cm Surface resistance, Ω DIN IEC 60093 10^9 – 10^A	Time yield limit, MPa		
Co-efficient of friction p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground Wear, $\mu m/km$ p = 0.05 N/mm2v=0.6 m/s on steel. hardened and ground, $\mu m/km$ THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω DIN IEC 60093 10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^9 – 10^10^10^10^10^10^10^10^10^10^10^10^10^1			
on steel. hardened and ground Wear, μm/km $p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground, μm/kmDIN 53 765340THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C Short term long termJIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω*cm Surface resistance, ΩDIN IEC 6009310^9 – 10^ 10^9 – 10^			
Wear, $\mu m/km$ $p = 0.05 N/mm2v=0.6 m/s$ on steel. hardened and ground, $\mu m/km$ DIN 53 765340 THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/KDIN 53 7523.3 ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^9 – 10^A 10^9 – 10^A	p = 0.05 N/mm 2v=0.6 m/s		
$p = 0.05$ N/mm2v=0.6 m/s on steel. hardened and ground, µm/kmTHERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C Short term long termDIN 53 765340Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 7523.3ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 60093 $10^{A9} - 10^{A}$	on steel. hardened and ground		
on steel. hardened and ground, μm/km THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 765340Max. service temperature, °C short term long term320 300320Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3 ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 6009310^9 – 10^A 10^9 – 10^A			
THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 765340Max. service temperature, °C short term long term320 300300Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3 ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω Dielectric strength, kV/mmDIN IEC 60093 $10^{A9} - 10^{A}$			
Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 765340Max. service temperature, °C HDT. Method B Max. service temperature, °C short term long term320 300300Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3 ELECTRICAL Dielectric loss factor (106 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω DIN IEC 6009310^9 – 10^A 10^9 – 10^A	on steel. hardened and ground, µm/km		
Glass transition temperature, °CDIN 53 765 340 Heat distortion temperature, °C HDT. Method AHeat distortion temperature, °C HDT. Method B 320 Max. service temperature, °Cshort term 320 long term 300 300 Thermal conductivity (23° C), W/(K·m) 300 Specific heat (23° C), J/g.KDIN 53 752 3.3 ELECTRICAL Dielectric constant (106 Hz)DIN 53 752 3.3 Dielectric loss factor (106 Hz)DIN IEC 60093 $10^{A9} - 10^{A}$ Specific volume resistance, Ω DIN IEC 60093 $10^{A9} - 10^{A}$	THERMAL		
Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term320 300Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7523.3 ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω DIN IEC 60093 $10^{A9} - 10^{A}$ $10^{A9} - 10^{A}$	Crystalline melting point, °C		
Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term320 300long term320Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K300Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 752 ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω^* cmDIN IEC 60093Surface resistance, Ω DIN IEC 6009310^9 - 10^N 10^9 - 10^N	Glass transition temperature, °C	DIN 53 765	340
Max. service temperature, °C short term320 300long term300Thermal conductivity (23° C), W/(K·m) Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 752 ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω^* cmDIN IEC 60093DIN IEC 60093 $10^{A9} - 10^{A}$ $10^{A9} - 10^{A}$	Heat distortion temperature, °C HDT. Method A		
short term320long term300Thermal conductivity (23° C), W/(K·m)300Specific heat (23° C), J/g.K300Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 752 ELECTRICAL 3.3Dielectric constant (106 Hz)300Specific volume resistance, Ω^* cmDIN IEC 60093Surface resistance, Ω DIN IEC 60093Dielectric strength, kV/mm10^9 – 10^4	Heat distortion temperature, °C HDT. Method B		
long term300Thermal conductivity (23° C), W/(K·m) 300 Specific heat (23° C), J/g.KDIN 53 752Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 752 ELECTRICAL Dielectric constant (106 Hz)Dielectric loss factor (106 Hz)DIN IEC 60093Specific volume resistance, Ω^* cmDIN IEC 60093Surface resistance, Ω DIN IEC 60093	Max. service temperature, °C		
Thermal conductivity $(23^{\circ} C)$, W/(K·m)Specific heat $(23^{\circ} C)$, J/g.KCoeff. of thermal expansion $(23-55^{\circ}C)$, $10^{-5}1/K$ DIN 53 7523.3 ELECTRICAL Dielectric constant (106 Hz)Dielectric loss factor (106 Hz)Specific volume resistance, Ω^* cmSurface resistance, Ω Dielectric strength, kV/mm	short term		320
Specific heat (23° C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 7523.3 ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω DIN IEC 60093 $10^{A9} - 10^{A}$ $10^{A9} - 10^{A}$	long term		300
Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 752 3.3 ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω^* cm DIN IEC 60093 $10^{+9} - 10^{+1}$ Dielectric strength, kV/mm	Thermal conductivity $(23^{\circ} \text{ C}), \text{ W/(K} \cdot \text{m})$		
Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 752 3.3 ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω^* cm DIN IEC 60093 $10^{+9} - 10^{+1}$ Dielectric strength, kV/mm	Specific heat (23° C), J/g.K		
Dielectric constant (106 Hz)Dielectric loss factor (106 Hz)Specific volume resistance, Ω^* cmDIN IEC 60093Surface resistance, Ω 10^9 – 10^4Dielectric strength, kV/mm10^9 – 10^4	Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$	DIN 53 752	3.3
Dielectric constant (106 Hz)Dielectric loss factor (106 Hz)Specific volume resistance, Ω^* cmDIN IEC 60093Surface resistance, Ω 10^9 – 10^4Dielectric strength, kV/mm10 - 9 – 10^4	ELECTRICAL		
Dielectric loss factor (106 Hz)DIN IEC 60093 $10^{9} - 10^{4}$ Specific volume resistance, Ω DIN IEC 60093 $10^{9} - 10^{4}$ Dielectric strength, kV/mmDin IEC 60093 10^{10}			
Specific volume resistance, Ω^* cmDIN IEC 60093 $10^{49} - 10^{40}$ Surface resistance, Ω $10^{49} - 10^{40}$ $10^{49} - 10^{40}$ Dielectric strength, kV/mm $10^{49} - 10^{40}$			
Surface resistance, Ω 10^9 – 10^ Dielectric strength, kV/mm		DIN IEC 60093	10^9 - 10^1
Dielectric strength, kV/mm			
INOSISTATION TO HACKING			
Flammability acc. to UL standard 94 V0			VO

Sintimid PAI ESd is the registered trademark of Ensinger Gmbh

Sintimid PUR HT

Polyimid

CHARACTERISTICS:

- High thermal and mechanical capacity
- Very creep resistant
- Good radiation-resistance
- Low outgassing
- Good chemical resistance
- Wear resistant
- Easily machined
- Flame retardent according to UL94 V-0
- Very good electrical insulation
- Sensitive to hydrolysis in higher thermal range

APPLICATIONS:

- Cyrogenics
- Electrical engineering
- Electronics
- Precision engineering
- · Aircraft and aerospace industries
- Mechanical engineering
- Food technology
- Medical technology
- Semiconductor technology

MATERIAL AVAILABILITY:

Rod: 6mm to 70mm Sheet: 5mm to 80mm

GRADES / COLOURS:

Sintimid[®] PUR HT: Black

PHYSICAL Density g/cm³ Moisture absorption to 23°C/50RH), % Water absorption to equilibrium, %DIN 53 479 DIN EN ISO 621.35 2.6 3.6MECHANICAL Tensile strength at yield, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessASTM D 638 4,000116 4,000Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa on steel. hardened and groundDIN EN ISO 179 (Charpy)75THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max	Sintimid PUR HT General Properties	DIN Standard	Typical Values
Moisture absorption ($23^{\circ}C/50RH$), %DIN EN ISO 622.6Water absorption to equilibrium, %DIN EN ISO 623.6MECHANICAL Tensile strength at yield, MPa Elongation at break, MPaASTM D 638116Elongation at break, %ASTM D 638116Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness Impact strength $23^{\circ}C$ (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h 		DIN 53 479	1 35
Water absorption to equilibrium, %DIN EN ISO 62 3.6 MECHANICAL Tensile strength at yield, MPa Elongation at break, MPaASTM D 790 ASTM D 638 116 ASTM D 638Elongation at break, %PaASTM D 638 9 Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessASTM D 638 $4,000$ Modulus of elasticity after flexural test, Mpa fare 1000 h with static load Time yield limit, MPa of 1% clongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm ³ v=0.6 m/s on steel. hardened and groundDIN EN ISO 179 (Charpy) 75 THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Max. service temperature, °C HDT. Method A Max. service temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max			
Tensile strength at yield, MPa Elongation at yield, %ASTM D 790 ASTM D 638116 10638Elongation at break, %ASTM D 6389Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessASTM D 6384,000Modulus of elasticity after flexural test, Mpa HardnessASTM D 6384,000Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static loadDIN EN ISO 179 (Charpy)75Trime yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm²v=0.6 m/s on steel. hardened and ground0.80.8THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A long termDIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)360 – 375Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 52 612 0.220.22Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10°51/KDIN 53 765 DIN 53 7523.60ELECTRICAL Dielectric constant (10° Hz) Dielectric constant (10° Hz) Dielectric constant (10° Hz) Dielectric strength, kV/mmASTM D 57 ASTM D 57 ASTM D 57 ASTM D 57 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 23.1Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220		DIN EN ISO 62	3.6
Elongation at yield, %ASTM D 790Tensile strength at break, MPaASTM D 6389Elongation at break, %ASTM D 6389Modulus of elasticity in tension, MPaASTM D 6384,000Modulus of elasticity after flexural test, MpaASTM D 6384,000HardnessImpact strength 23°C (Charpy), KJ/m²DIN EN ISO 179 (Charpy)75Creep rupture strength, MPaafter 100 h00.8after 100 h with static load01212for 1% elongation after 1000 h00.80.80090.5 N/mn²v=0.6 m/s0.8on steel. hardened and groundWear, µm/km0.5 N/mn²v=0.6 m/s0.8 $p = 0.05 N/mn²v=0.6 m/s$ DIN 53 765360 - 375on steel. hardened and groundISO-R 75 Verfahren A368Heat distortion temperature, °C HDT. Method AIDIN 53 765368Heat distortion temperature, °C HDT. Method B300300Thermal conductivity (23°C), W/(K·m)DIN 52 6120.22Specific heat (23°C), J/g.KDIN 53 7551.04Coeff. of thermal expansion (23-55°C), 10°51/KASTM D 1503.1Dielectric constant (10° Hz)ASTM D 1503.1Dielectric constant (10° Hz)ASTM D 5710^17Specific volume resistance, Ω*cmASTM D 5710^16Specific volume resistance, Ω*cmASTM D 5710^16Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to trackingDIN 53 481, IEC-243, VDE 0303 Teil			
Tensile strength at break, MPaASTM D 638116Elongation at break, %ASTM D 6389Modulus of elasticity in tension, MPaASTM D 6389Modulus of elasticity after flexural test, MpaASTM D 6389HardnessImpact strength 23°C (Charpy), KJ/m²DIN EN ISO 179 (Charpy)75Creep rupture strength, MPaafter 1000 h with static load0.812for 1% elongation after 1000 h0.80.80.8Co-efficient of friction0.80.80.8p = 0.05 N/mm²v=0.6 m/s0.11 N 53 765360 - 375on steel. hardened and groundSon steel. hardened and ground368THERMALCrystalline melting point, °CDIN 53 765360 - 375Isoar sterm at distortion temperature, °C HDT. Method ADIN 53 765360 - 375Heat distortion temperature, °C HDT. Method B0.11 N 53 765300Max. service temperature, °C HDT. Method B300300Thermal conductivity (23°C), W/(K·m)DIN 52 6120.22Specific heat (23°C), J/g.KDIN 53 7651.04Coeff. of thermal expansion (23-55°C), 10°51/KASTM D 1503.1Dielectric constant (10° Hz)ASTM D 1503.1Dielectric constant (10° Hz)ASTM D 5710^17Specific volume resistance, Ω *cmASTM D 5710^16Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to trackingDIN 53 761 220			
Elongation at break, %ASTM D 6389Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessASTM D 6384,000Modulus of elasticity after flexural test, Mpa HardnessASTM D 6384,000Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm²v=0.6 m/s on steel. hardened and groundDIN EN ISO 179 (Charpy)75THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A long termDIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)360 – 375Heat distortion temperature, °C HDT. Method B Max. service temperature, °C Jol M 53 765 Iong term360Heat distortion temperature, °C HDT. Method B Max. service temperature, °C Jol M 53 765 Iong term350DIN 52 612 DIN 53 7650.22Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10- ⁵ 1/KDIN 53 752ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω*cm Struft D 150ASTM D 150 ASTM D 150Din 53 481, IEC-243, VDE 0303 Teil 220Resistance to tracking20			116
Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa HardnessASTM D 638 $4,000$ $4,000$ Modulus of elasticity after flexural test, Mpa HardnessImpact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static loadDIN EN ISO 179 (Charpy)75Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static loadDIN EN ISO 179 (Charpy)75after 1000 h with static load120.80.8 Γ = 0.05 N/mm²v=0.6 m/s on steel. hardened and ground0.80.8Wear, µm/m p = 0.05 N/mm²v=0.6 m/s on steel. hardened and groundDIN 53 765360 - 375Heat distortion temperature, °C Heat distortion temperature, °C HDT. Method ADIN 53 765360 - 375Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7651.04ELECTRICAL Dielectric constant (10 ⁶ Hz) Specific volume resistance, Ω Specific volume resistance, Ω Cuface resistance, Ω ASTM D 1503.1Din 53 481, IEC-243, VDE 0303 Teil 220Resistance to tracking2020			
Modulus of elasticity after flexural test, Mpa Hardness4,000HardnessImpact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm²v=0.6 m/s on steel. hardened and ground Wear, µm/km $p = 0.05$ N/mm²v=0.6 m/s on steel. hardened and groundDIN EN ISO 179 (Charpy)75THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A long termDIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)360 – 375Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350 300300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 52 612 DIN 53 765 1.040.22 3.1ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω^{∞} cm Surface resistance, Ω^{Ω} cm Stath, IEC-243, VDE 0303 Teil 23.1 2.0Resistance to trackingDIN 53 481, IEC-243, VDE 0303 Teil 220			-
HardnessImpact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm²v=0.6 m/s on steel. hardened and groundDIN EN ISO 179 (Charpy)75THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)360 – 375Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350 300300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.KDIN 52 612 0.22 DIN 53 765 1.043250 300ELECTRICAL Dielectric constant (106 Hz) Dielectric loss factor (106 Hz) Specific volume resistance, Ω Cure factor (106 Hz) Specific volume resistance, Ω Cure factor (106 Hz) Specific volume resistance, Ω Cure factor (106 Hz) Specific volume resistance, Ω^2 cond to trackingASTM D 150 ASTM D 57 IO^10ELECTRICAL Dielectric term Din 53 481, IEC-243, VDE 0303 Teil 220		ASTNI D 056	
Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05$ N/mm ² v=0.6 m/s on steel. hardened and ground Wear, µm/km $p = 0.05$ N/mm ² v=0.6 m/s on steel. hardened and ground12 THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method ADIN 53 765 ISO-R 75 Verfahren A (DIN 53 461) $360 - 375$ Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350 $360 - 375$ Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g,K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 52 612 DIN 53 765 0.022 ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Dielectric strength, kV/mmASTM D 150 ASTM D 150 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 2 3.1 Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 2 20			4,000
Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground12Wear, µm/km p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground0.8THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A leat distortion temperature, °C HDT. Method ADIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)Heat distortion temperature, °C short term long termDIN 52 612 300360 – 375Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/KDIN 52 612 DIN 53 765 I.04350 300ELECTRICAL Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω Dielectric strength, kV/mmASTM D 150 ASTM D 57 IDN 53 481, IEC-243, VDE 0303 Teil 23.1Resistance to trackingDIN 53 481, IEC-243, VDE 0303 Teil 220	Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN EN ISO 179 (Charpy)	75
for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground 			12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	for 1% elongation after 1000 h		
on steel. hardened and ground Wear, μm/km p = 0.05 N/mm²v=0.6 m/s on steel. hardened and groundJanuar Step 2 THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Max. service temperature, °C HDT. Method B Max. Se			0.8
Wear, $\mu m/km$ $p = 0.05 N/mm^2v=0.6 m/s$ on steel. hardened and groundImage: Stress of the st			
$\begin{array}{c c} p = 0.05 \text{ N/mm}^2 v=0.6 \text{ m/s} \\ \text{on steel. hardened and ground} \end{array}$ $\begin{array}{c c} THERMAL \\ Crystalline melting point, ^C C \\ Glass transition temperature, ^C C HDT. Method A \\ eta distortion temperature, ^C C HDT. Method A \\ Heat distortion temperature, ^C C HDT. Method B \\ Max. service temperature, ^C C HDT. Method B \\ Max. service temperature, ^C C short term \\ long term \\ Thermal conductivity (23^{\circ}C), W/(K·m) \\ Specific heat (23^{\circ}C), J/g.K \\ Coeff. of thermal expansion (23-55^{\circ}C), 10^{-5}1/K \\ \end{array}$ $\begin{array}{c} DIN 52 612 \\ DIN 53 765 \\ 1.04 \\ DIN 53 752 \\ \end{array}$ $\begin{array}{c} 350 \\ 300 \\ 0.22 \\ DIN 53 765 \\ 1.04 \\ DIN 53 752 \\ \end{array}$ $\begin{array}{c} 350 \\ 300 \\ 0.22 \\ $	=		
on steel. hardened and groundDiscrete THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A (DIN 53 765)DIN 53 765 ISO-R 75 Verfahren A (DIN 53 461) $360 - 375$ Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term(DIN 53 461) 368 Heat distortion temperature, °C short termDIN 52 612 DIN 52 612 350 300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.KDIN 52 612 DIN 53 765 3.1 0.04ELECTRICAL Dielectric constant (10 ⁶ Hz) Specific volume resistance, Ω *cm Surface resistance, Ω ASTM D 150 ASTM D 150 3.1 0.003 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 2Resistance to tracking20			
Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method ADIN 53 765 ISO-R 75 Verfahren A (DIN 53 461) $360 - 375$ Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term 350 300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 52 612 DIN 53 765 0.22 0.22 ELECTRICAL Dielectric constant (10^6 Hz) Specific volume resistance, Ω Curface resistance, Ω Dielectric strength, kV/mmASTM D 150 ASTM D 257 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 2 3.1 0.01			
Glass transition temperature, °CDIN 53 765 $360 - 375$ Heat distortion temperature, °C HDT. Method AISO-R 75 Verfahren A (DIN 53 461) 368 Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term 350 Thermal conductivity (23°C), W/(K·m)DIN 52 612 0.22 Specific heat (23°C), J/g.KDIN 53 765 1.04 Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 752 4.9 ELECTRICALASTM D 150 3.1 Dielectric loss factor (10^6 Hz)ASTM D 150 0.003 Specific volume resistance, Ω *cmASTM D 257 10^{17} Surface resistance, Ω DIN 53 481, IEC-243, VDE 0303 Teil 2 20	THERMAL		
Heat distortion temperature, °C HDT. Method AISO-R 75 Verfahren A (DIN 53 461)368Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350 300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.KDIN 52 612 DIN 53 765300ELECTRICAL Dielectric constant (106 Hz) Specific volume resistance, Ω *cmASTM D 150 ASTM D 1503.1 0.003 ASTM D 257Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220	Crystalline melting point, °C		
Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term(DIN 53 461)368Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 52 612 DIN 53 765300 ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω *cm Surface resistance, Ω Dielectric strength, kV/mmASTM D 150 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 231Resistance to trackingDIN 53 481, IEC-243, VDE 0303 Teil 220	Glass transition temperature, °C	DIN 53 765	360 - 375
Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term350 300Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 52 612 DIN 53 7650.22 0.22 ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω *cm Surface resistance, Ω Dielectric strength, kV/mmASTM D 150 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 231 20	Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
Max. service temperature, °C short term long term 350 300 Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 52 612 DIN 53 765 DIN 53 765 DIN 53 752 0.22 4.9 ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mmASTM D 150 ASTM D 57 DIN 53 481, IEC-243, VDE 0303 Teil 2 310 0.003Resistance to tracking 20		(DIN 53 461)	368
long term300Thermal conductivity (23°C), W/(K·m)DIN 52 6120.22Specific heat (23°C), J/g.KDIN 53 7651.04Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7524.9ELECTRICALDielectric constant (10 ⁶ Hz)ASTM D 1503.1Dielectric loss factor (10 ⁶ Hz)ASTM D 1500.003Specific volume resistance, Ω^* cmASTM D 25710^17Surface resistance, Ω DIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to trackingImage: Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3"			
Thermal conductivity (23°C), W/(K·m) DIN 52 612 0.22 Specific heat (23°C), J/g.K DIN 53 765 1.04 Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K DIN 53 752 4.9 ELECTRICAL ASTM D 150 3.1 Dielectric constant (10 ⁶ Hz) ASTM D 150 0.003 Specific volume resistance, Ω *cm ASTM D 257 10^17 Surface resistance, Ω DIN 53 481, IEC-243, VDE 0303 Teil 2 20 Resistance to tracking 20 20	short term		350
Specific heat (23°C), J/g.K DIN 53 765 1.04 Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$ DIN 53 752 4.9 ELECTRICAL ASTM D 150 3.1 Dielectric constant (10^6 Hz) ASTM D 150 0.003 Specific volume resistance, Ω^* cm ASTM D 257 10^{17} Surface resistance, Ω DIN 53 481, IEC-243, VDE 0303 Teil 2 20 Resistance to tracking DIN 53 481, IEC-243, VDE 0303 Teil 2 20			
Coeff. of thermal expansion $(23-55^{\circ}C)$, $10^{-5}1/K$ DIN 53 7524.9 ELECTRICAL ASTM D 1503.1Dielectric constant $(10^{6}$ Hz)ASTM D 1500.003Dielectric loss factor $(10^{6}$ Hz)ASTM D 1500.003Specific volume resistance, Ω^{*} cmASTM D 257 10^{17} Surface resistance, Ω DIN 53 481, IEC-243, VDE 0303 Teil 220			
ELECTRICALASTM D 1503.1Dielectric constant (10^6 Hz)ASTM D 1500.003Dielectric loss factor (10^6 Hz)ASTM D 1500.003Specific volume resistance, Ω^* cmASTM D 257 $10^{^17}$ Surface resistance, Ω ASTM D 57 $10^{^16}$ Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to trackingImage: Constant of the second			
Dielectric constant (10^6 Hz)ASTM D 1503.1Dielectric loss factor (10^6 Hz)ASTM D 1500.003Specific volume resistance, Ω^* cmASTM D 257 10^{17} Surface resistance, Ω ASTM D 57 10^{16} Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to trackingImage: Constant of the section o	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	4.9
Dielectric loss factor (10^6 Hz)ASTM D 1500.003Specific volume resistance, Ω^* cmASTM D 257 10^{17} Surface resistance, Ω ASTM D 57 10^{16} Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to tracking 20	ELECTRICAL		
$\begin{array}{ccc} \text{Specific volume resistance, } \Omega^*\text{cm} & \text{ASTM D 257} & 10^{17} \\ \text{Surface resistance, } \Omega & \text{ASTM D 57} & 10^{16} \\ \text{Dielectric strength, kV/mm} & \text{DIN 53 481, IEC-243,} \\ \text{Resistance to tracking} & \text{VDE 0303 Teil 2} & 20 \end{array}$		ASTM D 150	
Surface resistance, ΩASTM D 5710^16Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to tracking20			
Dielectric strength, kV/mmDIN 53 481, IEC-243, VDE 0303 Teil 220Resistance to tracking20			
VDE 0303 Teil 2 20 Resistance to tracking 20			10^16
Resistance to tracking	Dielectric strength, kV/mm		20
	Resistance to tracking	VDE 0303 1e11 2	20
			V0

Sintimid PUR HT is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Sintimid PVX

Polyimid, black, 15% graphite, 10% PTFE

CHARACTERISTICS:	Sintimid PVX	DIN	Typical
High temperature resistanceGood sliding properties	General Properties	Standard	Values
Very creep resistant	PHYSICAL		
Good radiation-resistance	Density g/cm ³	DIN 53 479	1.48
 Low outgasing Good chemical resistance	Moisture absorption (23°C/50RH), %	DIN EN ISO 62	2.3
Flame retardent according to UL94	_		
V-0	MECHANICAL		
• Sensitive to hydrolysis in higher	Tensile strength at yield, MPa		
thermal range	Elongation at yield, % Tensile strength at break, MPa	DIN EN ISO 527	77
	Elongation at break, %	DIN EN ISO 527 DIN EN ISO 527	2.9
APPLICATIONS:	Modulus of elasticity in tension, MPa	DII (EI (150 527	2.9
Mechanical engineeringAutomotive engineering	Modulus of elasticity after flexural test, Mpa		
Conveyor technology	Hardness	DIN 53 505 (Shore Härte D)	84
• Aircraft and aerospace industries	Impact strength 23°C (Charpy), KJ/m ²	ASTM D 256 (Izod, Kerbe)	27
Vacuum technology	Creep rupture strength, MPa after 1000 h with static load		
Precision engineering	Time yield limit, MPa		
Hot gas technology	for 1% elongation after 1000 h		
MATERIAL AVAILABILITY:	Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$		0.3
Rod: 6mm to 70mm	$p = 0.05 \text{ N/mm}^2 = 0.6 \text{ m/s}$ on steel. hardened and ground		
Sheet: 5mm to 80mm	Wear, µm/km		
	p = 0.05 N/mm ² v=0.6 m/s		
GRADES / COLOURS:	on steel. hardened and ground		
Sintimid PVX: Black	THERMAL		
	Crystalline melting point, °C		
	Glass transition temperature, °C	DIN 53 765	330
	Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
		(DIN 53 461)	330
	Heat distortion temperature, °C HDT. Method B Max. service temperature, °C		
	short term		350
	long term		300
	Thermal conductivity (23°C), W/(K·m)		
	Specific heat (23°C), J/g.K		-
	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	5
	ELECTRICAL		
	Dielectric constant (10^6 Hz)		
	Dielectric loss factor (10^{6} Hz)		
	Specific volume resistance, Ω^* cm		
	Surface resistance, Ω		
	Dielectric strength, kV/mm		
	Resistance to tracking Flammability acc. to UL standard 94		
	i ianimaomity acc. to OE Stalluaru 74		

Sintimid PVX is the registered trademark of Ensinger Gmbh

Solder Pallet Materials

Static Control

CHARACTERISTICS:

- Low moisture aAbsorption
- Chemical resistant
- Excellent mechanical & thermal properties
- High-strength advancd composite materials
- Dimensional stability, flatness, thermal shock resistance and chemical resistance
- Lead-free environments

APPLICATIONS:

- Wave soldering machine
- Printed circuit board industry
- Electrical & electronic industry

MATERIAL AVAILABILITY:

Rod: 1mm to 25mm Sheet: 1,000mm x 2,000mm

GRADES / COLOURS:

CBC:	Deep Blue
CBC-C:	Black
CBC-NBC:	Light Grey
SPM-11:	Red

Solder Pallet Materials	ASTM or	CBC	CBC-C	CBC-NBC	SPM-11
General Properties	UL Test				
PHYSICAL					
Specific Gravity (g/cm ³)	D792	1.84	1.84	1.84	1.84
Water Absorption, in % by weight	D570	< 0.2%	< 0.2%	< 0.2%	< 0.3%
MECHANICAL					
Tensile Strength at 77°F/25°C in Psi (MPa)	D638	*40,000 (275)	*45,000 (310)	*40,000 (275)	*37,000 (255)
Tensile Strength at 266°F/130°C in Psi (MPa)	D638	*34,000 (234)	*34,000 (234)	*33,000 (227)	*30,000 (206)
Tensile Strength at 302°F/150°C in Psi (MPa)	D638	*31,000 (213)	*34,000 (234)	*30,000 (206)	*27,000 (186)
Tensile Modulus at 77°F/25°C in Psi 1x106 (Mpa)	D638	*2.8 (19,305)	*2.8 (19,305)	*2.8 (19,305)	*2.8 (19,305)
Flexural Strength at 77°F/25°C in Psi (MPa)	D790	*55,000 (379)	*55,000 (379)	*55,000 (379)	*54,000 (372)
Flexural Strength at 266°F/130°C in Psi (MPa)	D790	*35,000 (241)	*35,000 (241)	*35,000 (241)	*34,000 (241)
Flexural Strength at 302°F/150°C in Psi (MPa)	D790	*30,000 (206)	*30,000 (206)	*26,000 (179)	*26,000 (179)
Flexural Modulus at 77°F/25°C in Psi 1x106 (Mpa)	D790	*2.4 (19,305)	*2.8 (19,305)	*2.8 (19,305)	*2.5 (17,236)
Comp. Strength, Vertical at 77°F/25°C in Psi (MPa)	D695	*38,000 (262)	*38,000 (262)	*38,000 (262)	*34,000 (241)
Comp. Strength, Horz. at 77°F/25°C in Psi (MPa)	D695	*89,000 (613)	*89,000 (613)	*89,000 (613)	*80,000 (551)
IZOD Impact Strength in Ft-lb/in (J/cm)	D256	*15 (8.1)	*15 (8.1)	*15 (8.1)	*10.5 (5.8)
Barcol Hardness	D2583	90	90	77	75
THERMAL					
Coeff. of Linear Thermal Expansion (para.) K-1	D696	7.1 x 10 ⁻⁶	7.1 x 10 ⁻⁶	7.1 x 10 ⁻⁶	7.1 x 10 ⁻⁶
Coeff. of Linear Thermal Expansion (perp.) K-1	D696	20.5 x 10 ⁻⁶	20.5 x 10 ⁻⁶	20.5 x 10 ⁻⁶	20.5 x 10 ⁻⁶
Thermal Conductivity in BTU*in/Hr*Ft2*OF (W/m*K)	C177	2.0 (0.32)	2.0 (0.31)	2.0 (0.31)	2.1 (0.30)
Glass Transition temp. in TG °F (°C)	E1356	345 (174)	345 (174)	345 (174)	338 (170)
Thermal Decompositon temp. in °F (°C) @10% loss	E1641	723 (384)	723 (384)	723 (384)	723 (384)
**Minimum short term operating Temp. in °F (°C)	-	572 (300)	572 (300)	572 (300)	572 (300)
Solder Heat resistance 10 min at 500°F/260°C	-	_Pass	_Pass	_Pass	_Pass
Solder Heat resistance 5 min at 572°F/300°C	-	_Pass	_Pass	_Pass	_Pass
Air Heat resistance 5 hours at 500°F/260°C	-	_Pass	_Pass	_Pass	_Pass
Air Heat resistance 5 hours at 572°F/300°C	-	_Pass	_Pass	_Pass	_Pass
ELECTRICAL					
Surface Resistivity (ohms/sq)	D4496	1014	10 ⁵ - 10 ⁹	10 ⁵ - 10 ⁹	1014
Volume Resistivity (ohms/sq)	D4496	1014	10 ⁵ - 10 ⁹	$10^5 - 10^9$	10 ¹⁴
FLAME RESISTANCE					
UL Subject 94	UL 94	HB	HB	HB	HB

*Value are an average of hypical L.W. and C.W. values.

** All of these products have been used in some lead free solder applications.

All Typical value after post-baking.

-Any test results that require subjection visual evaluation, results were agreed upon by a cross-functional team.

The above values are measured averages and not guaranteed.

Note: Additional Flexural testing with the specimens conditioned at 302°F, was completed. The specimens were conditioned for one, three and five hours, with no notable reduction in strength.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecadur[®] PET

(polyethylene Terephthalate)

CHARACTERISTICS:Excellent wear resistanceLow coefficient of friction	Tecadur [®] PET	ASTM or	Typical
	General Properties	UL Test	Values
 Very good chemical resistance Good electrical insulator High mechanical strength In compliance with FDA regulations CFR 177.1630 for use in contact with food Good resistance to high-energy radiation 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr, 73°F, % MECHANICAL Tensile Strength at break, 73°F, ksi Tensile Modulus at yield, 73°F, 100 ksi Elongation at break, 73°F, % 	D792 D570 D638 D638 D638	1.39 0.08 8.69 4.16 300
 APPLICATIONS: Superior wear resistance Water purification systems Printing equipment Textile components Food-handling equipment Valves 	Elongation at yield, 73°F, %	D638	5.39
	Flexural Strength, 73°F, ksi	D638	12.00
	Flexural Modulus, 73°F, 100 ksi	D790	3.30
	Shear Modulus, 100 ksi	D790	1.51
	Izod Impact, Notched, ft-lbs/in	D256	1.5
	Rockwell, Hardness M	D785	72
MATERIAL AVAILABILITY: Rod: 1/4" to 8" Sheet: 1/4" to 4" GRADES / COLOURS: Tecadur [®] : Black, White (Natural)	THERMALHeat Deflection, °F, 264 psi 66 psiCoeff. of Linear Thermal Expansion, in/in/°FConductivity, Btu-in/hr/ftSpecific Heat, Btu/lbs-°FELECTRICALVolume Resistivity, 73°F, ohm-cmDielectric Constant, 100% HzDissipation Factor, 100 Hz, 73°FDielectric Strength, short, 0.125" thickness, V/mil	D648 - D696 C177 - D257 D150 D150 D150 D149	$ \begin{array}{c} 130\\ 310\\ 4.64\\ 1.46\\ 0.31\\ 1.0 \times 10^{16}\\ 3.20\\ 0.001\\ 400\\ \end{array} $

Tecadur[®] PET is the registered trademark of Ensinger Industries, Inc.

Tecafine PP ELS

Polypropylen

CHARACTERISTICS:

- Very good chemical resistance
- Good sliding properties
- Very abrasion resistant
- High compression strength and hardness
- Creep resistant
- Very good UV and weather resistance

APPLICATIONS:

- Chemical engineering
- Mechanical engineering
- Automotive engineering
- Transport and conveyor technology
- Pumps and instrument manufacture
- · Filtering technology
- Galvanising

MATERIAL AVAILABILITY:

Rod:	5mm to 100mm
Sheet:	5mm to 50mm

GRADES / COLOURS:

Tecafine PP ELS: Grey

Tecafine PP ELS General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	0.95
Water absorption to equilibrium, %	DIN EN ISO 62	0.03
MECHANICAL		
Tensile strength at yield, MPa		
Elongation at yield, %		
Tensile strength at break, MPa	DIN EN ISO 527	25
Elongation at break, %	DIN EN ISO 527	4
Modulus of elasticity in tension, MPa	DIN EN ISO 527	1,300
Modulus of elasticity after flexural test, Mpa		
Hardness	DIN 53 456 (Kugeldruckhärte)	75
Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 179 (Charpy)	30
Creep rupture strength, MPa		
after 1000 h with static load		
Time yield limit, MPa		
for 1% elongation after 1000 h Co-efficient of friction		0.3
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		0.5
on steel. hardened and ground		
Wear, µm/km		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
THERMAL		
Crystalline melting point, °C	DIN 53 765	165
Glass transition temperature, °C	DIN 53 765	-18
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
	(DIN 53 461)	65
Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren B	
	(DIN 53 461)	105
Max. service temperature, °C		
short term		120
long term T_{1} is (22%) $W_{1}(K_{1})$		100
Thermal conductivity (23°C), W/(K·m)		0.22
Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	9
Coeff. of thermal expansion (25-55 C), 10°1/K	DIN 35 752	9
ELECTRICAL		
Dielectric constant (10^6 Hz)		
Dielectric loss factor (10^6 Hz)		
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^3 - 10^5
Surface resistance, Ω	DIN IEC 60093	10^3 - 10^5
Dielectric strength, kV/mm		
Resistance to tracking		
Flammability acc. to UL standard 94		HB

Tecafine PP ELS is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

TecaformTM

(Acetal Copolymer)

CHARACTERISTICS:

- Low moisture absorption
- Excellent machiniability
- Chemical resistance to fuels and • solvents
- · Good wear and abrasion properties

Tecaform™

Melting Point, °F

General Properties

- Natural grade is FDA, USDA, NSI and 3A Sanitary compliant
- Good dimensional stability

APPLICATIONS:

- Material handling, machinery and fluid handling
- Gears, wear strips, bushings, pump parts, fittings and rollers

MATERIAL AVAILABILITY:

1/8" to 10" Rod: Sheet: 1/8" to 4"

GRADES / COLOURS:

Tecaform[™]: White, Black

PHYSICAL		
Specific Gravity (g/cm ³)	D792	
Water Absorption, %, @24 hrs, 73°F	D570	
@Saturation, 73°F	D570	
MECHANICAL		
Tensile Strength at yield, 73°F, psi	D638	
Tensile Modulus, psi	D638	
Elongation at break, 73°F, %	D638	
Flexural Strength, 73°F, psi	D790	
Flexural Modulus, 73°F, psi	D790	
Compressive Strength, psi	D695	
Izod Impact Strength 73°F, ft-lbs/in	D256	
Rockwell, Hardness, 73°F, M Scale	D785	
Shure Hardness D Scale	_	
Wear Factor Against Steel, 40psi, 50 fpm in ³ / hr x 1/PV	D3702	
Static Coeff. of Friction	D3702	
Dynamic Coeff. of Friction, 40psi, 50 fpm	D3702	
THERMAL		
Heat Deflection Temp., °F, 66 psi	D648	
264 psi	D648	
Coeff. of Linear Thermal Expansion, in/in/°F	D696	
Maximum Servicing Temp., °F, Intermittent	-	
Long Term	UL746B	
Specific Heat, Btu/lbs-°F		
Thermal Conductivity		
Vicate Sofening Point, °F	-	

Falmmability **ELECTRICAL** Surface Resistivity, ohm/sq D257 Volume Resistivity, ohm-cm D257 Dielectric Strength, V/mil D149 Dielectric Constant,@ 60 Hz, 73°F, 50% RH D150 @ 1 MHz D150

@ 20 GHz

@ 30 GHz

Dissipation Factor, @ 60 HZ, 73°F

Tecaform[™] is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

ASTM or

UL Test

D2133

UL94

D150

D150

D150

Typical

Values

1.41

0.22

0.8

8,800

380,000

25

11,000

360,000

4.500 1.0

86

65 x 10⁻¹⁰

0.21

316 230 4.7 x 10⁻⁶ 285 195 _ _ _

329

HB

 $1.0 \ge 10^{14}$

500

3.7

_

0.001

Tecaform AD

(Acetal Homopolymer)

CHARACTERISTICS: • Good sliding properties	Tecaform AD General Properties	DIN Standard	Typical Values
 Resistant to cleaning and disinfecting agents Very good electrical insulation Easily machined and polished Not resistant to hot water over 60° C 	PHYSICAL Density g/cm ³ Water absorption to equilibrium, %	DIN 53 479 DIN EN ISO 62	1.42 0.5
APPLICATIONS:Mechanical engineering	MECHANICAL Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527	70
 Automotive engineering Transport and conveyor technology Electrical engineering Precision engineering Domestic appliance 	Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 178 DIN 53 456 (Kugeldruckhärte) DIN EN ISO 179 (Charpy)	25 3,000 2,620 170 n.b. 40
MATERIAL AVAILABILITY: Rod: 3mm to 200mm Sheet: 5mm to 100mm	after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h		13
GRADES / COLOURS: Tecaform AD: Natural	Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$		0.34 4.6
	on steel. hardened and ground THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	-60
	Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B (DIN 53 461)	124 170
	Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	150 110 0.31 1.5 10
	ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94	DIN 53 483, IEC-250 DIN 53 483, IEC-250 DIN IEC 60093 DIN IEC 60093 DIN 53 481, IEC-243, VDE 0303 Teil 2 DIN 53 480, VDE 0303 Teil 1	3.7 0.005 > 10^14 > 10^14 > 50 KA 3c HB

Tecaform AD is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecaform AD AF

Polyoxymethylen (Homopolymer)

CHARACTERISTICS:Very good sliding propertiesRigid, strong, tough	Tecaform AD AF General Properties	DIN Standard	Typical Values
 Resistant to cleaning agents and numerous solvents and detergents Very good electrical insulation Easily machined 	PHYSICAL Density g/cm ³ Water absorption to equilibrium, %	DIN 53 479 DIN EN ISO 62	1.54 0.72
APPLICATIONS:Mechanical engineeringAutomotive engineering	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa	DIN EN ISO 527	50
 Electrical engineering Electronic industry Precision engineering Process technology Packaging and paper processing machinery 	Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 178	10 2,900 2,410 170 40
MATERIAL AVAILABILITY: Rod: 4mm to 150mm Sheet: 5mm to 50mm GRADES / COLOURS: Tecaform AD AF: Brown	Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.14
	THERMAL Crystalline melting point, °C		
	Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	-60
	Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B (DIN 53 461)	118 168
	Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		150 110
	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K ELECTRICAL	DIN 53 752	8
	Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm	DIN 53 483, IEC-250 DIN 53 483, IEC-250 DIN IEC 60093 DIN IEC 60093 DIN 53 481, IEC-243, VDE 0303 Teil 2	3.1 0.009 > 10^15 > 10^15 15
	Resistance to tracking Flammability acc. to UL standard 94		HB

Tecaform AD AF is the registered trademark of Ensinger Gmbh

Tecaform AH ELS

Polyoxymethylen (Copolymer)

CHARACTERISTICS:Electrically conductiveRigid, strong, tough	Tecaform AH ELS General Properties	DIN Standard	Typical Values
 Resistant to numerous solvents Resistant to cleaning agents Wear resistant Easily machined UV and weather resistant 	PHYSICAL Density g/cm ³ Water absorption to equilibrium, % MECHANICAL	DIN 53 479 DIN EN ISO 62	1.41 0.5
APPLICATIONS:Electrical protection	Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa	DIN EN ISO 527	50
 Mechanical engineering Automotive engineering Electrical engineering Electronics 	Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa	DIN EN ISO 527 DIN EN ISO 527	15 2,000
 Electrically conductive functional parts 	Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	ISO 2039/2 (Rockwell-Härte) DIN EN ISO 180 (Izod)	M97 > 1,000
MATERIAL AVAILABILITY: Rod: 4mm to 100mm Sheet: 5mm to 80mm GRADES / COLOURS:	after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.14
Tecaform AH ELS: Beige, Black	Wear, μ m/km p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground		
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	-60
	Heat distortion temperature, °C HDT. Method B Max. service temperature, °C	(DIN 53 461)	89
	short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		150 100
	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	11
	ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz)		
	Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking	DIN IEC 60093 DIN IEC 60093	10^2 - 10^4 10^2 - 10^4
	Flammability acc. to UL standard 94		HB

Tecaform AH ELS is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecaform AH GF 25

Polyoxymethylen (Copolymer) Glass Filled 25%

- Wear resistant
- Resistant to numerous solvents
- Good electrical insulation
- Easily machined
- Resistant to cleaning agents

APPLICATIONS:

- Mechanical engineering
- Automotive engineering
- · Electrical engineering
- Precision engineering
- Domestic appliance
- Insulators, snap fit connectors

MATERIAL AVAILABILITY:

Rod:	4mm to 200mm
Sheet:	5mm to 80mm

GRADES / COLOURS:

Tecaform AH GF 25 General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.58 0.15
MECHANICAL		
Tensile strength at yield, MPa		
Elongation at yield, %		
Tensile strength at break, MPa	DIN EN ISO 527	130
Elongation at break, %	DIN EN ISO 527	3
Modulus of elasticity in tension, MPa	DIN EN ISO 527	9,000
Modulus of elasticity after flexural test, Mpa	DDI 52 456 (II 11 11 1)	105
Hardness Impact strength 23°C (Charpy), KJ/m ²	DIN 53 456 (Kugeldruckhärte)	195 40
Creep rupture strength, MPa	DIN EN ISO 179 (Charpy)	40
after 1000 h with static load		
Time yield limit, MPa		
for 1% elongation after 1000 h		
Co-efficient of friction		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
Wear, $\mu m/km$ p = 0.05 N/mm ² v=0.6 m/s		
on steel. hardened and ground		
THERMAL		
Crystalline melting point, °C		
Glass transition temperature, °C	DIN 53 765	-60
Heat distortion temperature, °C HDT. Method A		
Heat distortion temperature, °C HDT. Method B		
Max. service temperature, °C		
short term		140
long term		100
Thermal conductivity (23°C), W/(K·m)		
Specific heat"(23°C), J/g.K		
Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$	DIN 53 752	3
ELECTRICAL		
Dielectric constant (10 ⁶ Hz)		4.8
Dielectric loss factor (10^6 Hz)		0.005
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^14
Surface resistance, Ω	DIN IEC 60093	10^12
Dielectric strength, kV/mm		> 50
Resistance to tracking		
Flammability acc. to UL standard 94		

Tecaform AH GF 25 is the registered trademark of Ensinger Gmbh

SUPERFIX®

Tecaform[®] HPV 13

(Delrin[®] AF blend)

CHARACTERISTICS:Homopolymer acetal with internal PTFE lubricant	Tecaform [®] HPV 13 General Properties	ASTM or UL Test	Typical Values
Low coefficient of frictionGood dimensional stability	PHYSICAL		
 Good surface hardness and resilience 	Specific Gravity (g/cm ³)	D792	1.54
 Superior resistance to repeated 	Water Absorption, @24 hrs, 73°F, %	D570	0.22
Superior resistance to repeated impacts and creepExcellent machinability	MECHANICAL		
Complies with FDA regulations	Tensile Strength at yield, 73°F, psi	D638	12,500
21 CFR 177.2470 and CFR177.105	Tensile Modulus, 73°F, psi	D638	8.58 x 10 ⁵
for use in contact with food	Elongation, Break, 73°F, %	D638	17.5
	Flexural Strength, 73°F, psi	D790	10,000
APPLICATIONS:	Flexural Modulus, 73°F, psi	D790	3.5 x 10 ⁵
Precision instruments	Izod Impact Strength, Notched, 73°F, ft-lbs/in	D256	0.7
 Measuring devices 	Rockwell, Hardness R Scale	D785	118
Automotive			
Aviation	THERMAL		
Military	Heat Deflection Temp., °F, 66 psi	_	_
Industrial	264 psi	D648	215
 Food processing machinery 	Maximum Temp., °F, Long Term	-	185
 Business equipment and 	Short Term	-	-
 Specialty valve areas 	Coeff. of Linear Thermal Expansion, in/in/°F	D696	5.1 x 10 ⁻⁵
	Applicable Temp. Range for Thermal Exp.	-	85 - 140
MATERIAL AVAILABILITY:	Melting Point, °F	-	347
Rod: 1/4" to 6"			
Sheet: 1/4" to 4"	TRIBOLOGICAL		
	Coeff. of Friction, 40 psi, 50 fpm,		0.07
GRADES / COLOURS:	Static	_	0.07
Tecaform [®] HPV 13: Dark Brown	Dynamic Wear Factor	_	0.12
		-	20 x 10 ⁻¹⁰
	$(in^2 / hr) \times (1 / PV)$		12,000
	Limiting PV, 10 fpm, ft-lbs/min Limiting PV, 100 fpm, ft-lbs/min	_	12,000 1,600
	Linning F v, 100 ipin, it-los/min	_	1,000

Tecaform[®] HPV 13 is the registered trademark of Ensinger Industries, Inc.

Tecaform SD

(static dissipative copolymer acetal)

 CHARACTERISTICS: Permanently anti-static	Tecaform SD	ASTM or	Typical
Tecaform SD has a surface resistivity	General Properties	UL Test	Values
 of 10⁹ – 10¹¹ ohms/sq Low coefficient of friction Contains no carbon additives	 PHYSICAL Specific Gravity (g/cm³) Water Absorption, 24 hr., 73°F, % Heat Deflection, 264 psi, °F Melting Point, °F MECHANICAL Tensile Strength, psi 	D792	1.33
Tecaform SD is an inherently static-		D570	0.20
dissipative composite containing no		-	190
carbon and is generally acceptable for		-	347
clean room applications Unaffected by humidity Insulates against moderate to high		D638	6,600
 An inherently anti-static copolymer acetal Busniess machine Semiconductor Electrical/electronics markets 	Tensile Elongation, % Flexural Strength, psi Flexural Modulus, psi Izod Impact (Notched), ft-lb/in BEARING AND WEAR Wear Factor (K) Dynamic C.O.F. @40 psi, 50 fpm Static C.O.F	D638 D790 D790 D256	$\begin{array}{c} 40 - 50 \\ 7,000 \\ 210,000 \\ 1.8 \\ 13 \times 10^{-10} \\ 0.18 \\ 0.11 \end{array}$
MATERIAL AVAILABILITY: Rod: 1/4" to 8" Sheet: 1/4" to 4" GRADES / COLOURS: Tecaform [®] SD: Ivory/Natural	ELECTRICAL Surface Resistivity, Ohm/Square Volume Resistivity, Ohm - cm	D257 D257	10 ⁹ x 10 ¹¹ 10 ⁹ x 10 ¹¹

Tecaform SD is the registered trademark of Ensinger Industries, Inc.

SUPERFIX®

Tecaflon[®] PVDF

(Polyvinylidene Fluoride)

CHARACTERISTICS:Superior chemical resistance PVDF has a high chemical resistance	Tecaflon [®] PVDF General Properties	ASTM or UL Test	Typical Values
 to strong acids, aliphatics, and aromatics Very high dielectric and piezoelectric constants Tecaflon[®] is FDA compliant Absolutely non-toxic Good mechanical properties in tension as well as in deflection Uses standard machining and welding techniques 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption, 24 hr., 73°F, % MECHANICAL Tensile Strength, Break, 73°F, psi Tensile Modulus, 73°F, psi Elongation, Break, 73°F, % Flexural Strength, 73°F, psi Flexural Modulus, 73°F, psi 	D792 D570 D638 D638 D638 D638 D790 D790	1.73 < 0.04 7,800 350,000 35 10,750 310,000
 APPLICATIONS: Components in the chemical, petrochemical, hydrometallurgical, pharmaceutical, food, paper and pulp industries Semiconductor processing industry MATERIAL AVAILABILITY: Rod: 1/4" to 9" Sheet: 1/4" to 4" 	 Izod Impact Strength, Notched, 73°F, ft-lbs/in Rockwell, Hardness R Scale Compressive Strength, 73°F, psi THERMAL Deflection Temp., °F, 66 psi 264 psi Coeff. of Thermal Expansion, in/in/°F Melting Point, °F Thermal Conductivity, Btu-in/hr-ft²-° Flammability 	D790 D256 D785 D695 D648 D648 D648 D696 D3448 C177 UL94	3.0 3.0 100 11,600 300 235 7.1 x 10 ⁻⁶ 342 1.32 V-O
GRADES / COLOURS: Tecaflon [®] : White (Natural)	ELECTRICAL Dielectric Strength, V/mil Dielectric Constant, 60 Hz, 73°F, 50% RH Dissipation Factor, 60 Hz, 73°F Volume Resistivity, 73°F, ohm-cm	D149 D150 D150 D257	280 9 0.06 5 x 10 ¹⁴

Tecaflon[®] PVDF is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecaflon PVDF CF 8

Polyvinylidenfluorid, 8% carbon fibres

CHARACTERISTICS:Very good chemical resistanceGood sliding properties	Tecaflon PVDF CF 8 General Properties	DIN Standard	Typical Values
 Very abrasion resistant High compression strength and hardness Continuous service temperature up to 150°C 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.78 0.04
 Creep resistant Very good UV and weather resistance APPLICATIONS: Chemical engineering Mechanical engineering Automotive engineering 	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 178	93 1 6,000 6,000
 Pumps and instrument manufacture Solar installations Filtering technology Galvanizing MATERIAL AVAILABILITY: Rod: 4mm to 100mm Sheet: 5mm to 50mm GRADES / COLOURS: Tecaform PVDF CF 8: Black	Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.23
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 765 DIN 53 752	-18 150 150 3.6
	ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94		10^3 – 10^5 10^5 – 10^7 V0

Tecaflon PVDF CF 8 is the registered trademark of Ensinger Gmbh

Tecamax SRP sw

Polyparaphenyl Copolymer

CHARACTERISTICS:Very high strength and stiffnessExcellent hardness and scratch	Tecamax SRP sw General Properties	ASTM or UL Test	Typical Values
 resistance Very good chemical resistance Inherent low flammability (UL94 V-0) Good properties in low temperature 	PHYSICAL Density g/cm ³ Water absorption to equilibrium, %		1.21 0.5
rangeLow thermal expansion coefficientEasily machining and polishing	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa	D638	207
 APPLICATIONS: Bearings, gears, valve, valve seats, structural parts, connectors, thermal-electrical insulator MATERIAL AVAILABILITY: Rod: 1/4" to 5" 	Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, Mpa Hardness (Rockwell B scale) Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load	D638 D790 D785 D4812	8,300 8,300 80 B 1,200
Sheet: 1/4" to 4" GRADES / COLOURS: Tecamax SRP sw: Black	Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	E1356 ISO-R 75 Verfahren A (DIN 53 461)	155 152
	Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K		150 140 3 - 4
	ELECTRICAL Dielectric constant (10 ⁶ Hz)	D150	3.1
	Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, kV/mm Surface resistance Dielectric strength, Ω*cm	D149	6.44
	Resistance to tracking, Ω Flammability acc. to UL standard 94		V-0

Tecamax SRP sw is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecamid®

(Nylon)

CHARACTERISTICS:

- Good sliding properties with high wear resistance
- Good chemical resistance to many oils, greases, petrol, etc.
- Good machinability
- Tough even at low temperatures

APPLICATIONS:

- Ideal material for metal replacement
- Automotive parts, industrial valves, railway tie insulators
- Design requirments include high strength, toughness, and weight reduction

MATERIAL AVAILABILITY:

Rod: 3/16" to 4 3/4" Sheet: 1/32" to 4"

GRADES / COLOURS:

Tecamid® 6/6:Biege & BlackTecamid® 6/12:Biege & BlackTecamid® ST:Biege & BlackTecamid® HS:Biege & Black

Tecamid [®] Nylon General Properties	ASTM or UL Test	Tecamid 6/6	Tecamid 6/12	Tecamid ST	Tecamid HS
PHYSICAL					
Specific Gravity g/cc	D792	1.14	1.06	1.08	1.14
Water Absorption %, @24 hrs., 73°F	D570	1.2	0.25	1.2	_
@Saturation, 73°F	D570	8.5	3.0	6.7	_
MECHANICAL					
Tensile Strength, @Yield, 73°F, psi	D638	100,000	8,000	7,200	10.000
Tensile Modulus, psi	D638	350,000	300,000	-	350,000
Elongation @ Break, 73°F, %	D638	25	20	60	25
Flexural Strength, 73°F, psi	D790	15,500		9,800	-
Flexural Modulus, 73°F, psi	D790 D790	440,000	275.000	245,000	440,000
Compressive Strength, psi	D790 D695	5,000	,	243,000	440,000
		,	2,400 0.9	17.0	1.2
Izod Impact Strength, 73°F, ft-lbs/in	D256	1.1 M00			1.2
Rockwell,Hardness, M or R Scale	D785	M90	R114	R112	-
Shure,Hardness, D Scale	-	-	_	_	-
Wear Factor Against Steel, 40 psi, 50 fpm	D2702	200 10 10	100 10 10	200 10 10	
$in^3/hr \ge 1/PV$	D3702	200 x 10 ⁻¹⁰	190 x 10 ⁻¹⁰	200 x 10 ⁻¹⁰	—
Static Coeff. of Friction	D3702	_	0.31	_	-
Dynamic Coeff. of Friction, 40 psi, 50 fpm	D3702	0.26	_	0.28	—
THERMAL					
Heat Deflection Temp., @66 psi, °F	D648	455	_	421	392
@264 psi, °F	D648	194	142	160	194
Coeff. of Linear Thermal Expansion, in/in-°F	D696	4.5 x 10 ⁻⁵	5 x 10 ⁻⁵	6.7 x 10 ⁻⁵	_
Maximum Servicing Temp. Intermittent, °F	_	300	_	_	_
Long Term, °F	UL7468	185	_	_	_
Specific Heat, BTU/lb-°F	_	0.40	0.45	_	_
Thermal Conductivity	_	_	1.53	_	_
Vicate Softening Point, °F	_	_	-	_	_
Melting Point, °F	D2133	491	422	505	504
Flammability (mm)	UL94	V-2 (3.0)	HB (0.86)	HB (0.81)	HB (0.75)
	UL I	1 2 (3.0)	11D (0.00)	1112 (0.01)	IID (0.75)
ELECTRICAL					
Surface Resistivity, ohm/square	D257	_		-	-
Volume Resistivity, ohm-cm	D257	10^{15}	10 ¹⁵	-	-
Dielectric Strength, V/mil	D149	300 - 400	-	-	-
Dielectric Constant, @60 Hz, 73°F, 50%, RH	D150	4	4	_	-
@ 1 MHz	D150	3.6	3.5	_	_
@ 20 GHz	D150	_	_	_	_
@ 30 MHz	D150	_	_	_	_
Dissipation Factor, @ 60 HZ, 73°F	D150	0.01	0.02	_	-

Tecamid[®] is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecamid MDS[®]

(Molybdenum Disulfide Filled Nylon)

П

CHARACTERISTICS:Low surface frictionIncreased surface hardness	Tecamid MDS [®] General Properties	ASTM or UL Test	Typical Values
Increased heat resistanceHigher tensile propertiesImproved dimensional stabilityrequiring high lubricity	PHYSICAL Specific Gravity (g/cm ³) Water Absorption, % @24 hrs, 73°F @Saturation, 73°F	D792 D570 D570	1.14 1.2 – 2.5 7.5 – 8.5
 APPLICATIONS: Bearings, thrust washers, bushings, wear pads, sheaves, rollers, gears, sprockets, and wheels Material handling systems Pulp and paper processing equipment Industries equipment MATERIAL AVAILABILITY: Rod: 3/16" to 2" Sheet: 1/32" to 4" 	MECHANICAL Tensile Strength at yield, 73°F, psi Tensile Modulus, psi Elongation at break, 73°F, % Flexural Strength, 73°F, psi Flexural Modulus, 73°F, psi Compressive Strength, psi Izod Impact Strength 73°F, ft-lbs/in Rockwell, Hardness M Scale Shure Hardness D Scale Wear Factor Against Steel, 40psi, 50 fpm in ³ / hr x 1/PV Static Coeff. of Friction	D638 D638 D638 D790 D790 D695 D256 D785 D3702 D3702	11,000 450,000 15 - - 2.1 R 120 - 1.9 x 10 ⁻⁶
GRADES / COLOURS: Tecamid MDS [®] : Grey	Dynamic Coeff. of Friction, 40psi, 50 fpm	D3702 D3702	_
	THERMAL Heat Deflection Temp., °F, 66 psi 264 psi	D648 D648	470 194
	Coeff. of Linear Thermal Expansion, in/in/°F Maximum Servicing Temp., °F, Intermittent Long Term	D696 - UL746B	4.0 x 10 ⁻⁶ 355 230
	Specific Heat, Btu/lb-°F Thermal Conductivity Vicate Sofening Point, °F Melting Point, °F Falmmability (mm)	- - D2133 UL94	0.4 1.7 - 491 HB
	ELECTRICAL Surface Resistivity, ohm/sq Volume Resistivity, ohm-cm Dielectric Strength, V/mil Dielectric Constant,@ 60 Hz, 73°F, 50% RH @ 1 MHz @ 20 GHz @ 30 GHz Dissipation Factor, @ 60 HZ, 73°F	D257 D257 D149 D150 D150 D150 D150 D150 D150	- 10 ¹⁵ 30 2.5 - - - -

Tecamid MDS[®] is the registered trademark of Ensinger Industries, Inc.

Tecamid 66 CF 20

Polyamid 66, 20% carbon fibres

CHARACTERISTICS:Very rigidEasily machined	Tecamid 66 CF 20 General Properties	DIN Standard	Typical Values
 Resistant to many oils, greases, diesels and petrol Very abrasion resistant Good heat deformation resistance Not electrically insulating 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), % Water absorption to equilibrium, %	DIN 53 479 DIN EN ISO 62 DIN EN ISO 62	1.23 2.2 6.5
 APPLICATIONS: Mechanical engineering Automotive engineering Gears, couplings and engine construction Packaging and paper processing machinery Electrical tools Electrical insulating parts MATERIAL AVAILABILITY: Rod: 4mm to 150mm Sheet: 5mm to 100mm GRADES / COLOURS: Tecamid 66 CF 20: Black	MECHANICAL Tensile strength at yield, MPa Elongation at yield, $\%$ Tensile strength at break, MPa Elongation at break, $\%$ Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground Wear, µm/km p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 ISO 2039/1 (Kugeldruck-Härte, 358N) DIN EN ISO 179 (Charpy)	190 / 150 2.5 / 6 13,500 / 11,000 187 / 200 45 0.16 - 0.2 0.7
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 765 ISO-R 75 Verfahren A (DIN 53 461) ISO-R 75 Verfahren B (DIN 53 461) DIN 53 752	72 / 5 245 250 170 110 0.43 1.8 5.5
	ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94		10^2 – 10^4 10^2 – 10^4 HB

Tecamid 66 CF 20 is the registered trademark of Ensinger Gmbh

Tecamid[®] 6/6 GF30

(Extruded Nylon 6/6 30% Glass-Fiber Reinforced)

CHARACTERISTICS:Superior resistance to wear and organic-chemicals	Tecamid [®] 6/6 GF30 General Properties	ASTM or UL Test	Typical Values
 Excellent heat deflection temperature Excellent wear resistance Double the strength and stiffness of unreinforced nylons Very good fatigue endurance 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption, % @24 hrs, 73°F @Saturation, 73°F	D792 D570 D570	1.35 0.7 5.4
 Superior creep resistance 	MECHANICAL Tensile Strength at yield, 73°F, psi	D638	12,000
 APPLICATIONS: Automotive parts, industrial valves, railway tie insulators Design requiements include high strength, toughness, and weight reduction MATERIAL AVAILABILITY:	Tensile Modulus, psi Elongation at break, 73°F, % Flexural Strength, 73°F, psi Flexural Modulus, 73°F, psi Compressive Strength, psi Izod Impact Strength 73°F, ft-lbs/in Rockwell, Hardness M Scale Shure Hardness D Scale Wear Factor Against Steel, 40psi, 50 fpm	D638 D638 D790 D790 D695 D256 D785 - D3702	400,000 10 18,500 550,000 - 1.0 90 - -
Rod: 3/16" to 6" Sheet: 1/4" to 4"	in ³ / hr x 1/PV Static Coeff. of Friction Dynamic Coeff. of Friction, 40psi, 50 fpm	D3702 D3702	_
GRADES / COLOURS: Tecamid [®] 6/6 GF30: Grey	THERMAL	00702	
	Heat Deflection Temp., °F, 66 psi 264 psi	D648 D648	490 482
	Coeff. of Linear Thermal Expansion, in/in/°F Maximum Servicing Temp., °F, Intermittent Long Term	D696 - UL746B	1.2 x 10 ⁻⁶ 465 220
	Specific Heat, Btu/lb-°F Thermal Conductivity Vicate Sofening Point, °F Melting Point, °F	- - D2133	- - 491
	Falmmability (mm)	UL94	_
	ELECTRICAL Surface Resistivity, ohm/sq Volume Resistivity, ohm-cm Dielectric Strength, V/mil Dielectric Constant,@ 60 Hz, 73°F, 50% RH @ 1 MHz @ 20 GHz @ 30 GHz Dissipation Factor, @ 60 HZ, 73°F	D257 D257 D149 D150 D150 D150 D150 D150	

Tecamid[®] 6/6 GF30 is the registered trademark of Ensinger Industries, Inc.

Tecanat

Polycarbonat

CHARACTERISTICS:

- Tough
- Easily welded and bonded
- Good electrical insulation
- Good heat deformation resistance
- Easily machined and polished

APPLICATIONS:

- Mechanical engineering
- Food technology
- Medical technology
- Transport and conveyor technology
- Electrical engineering
- Automotive engineering
- Precision engineering
- Domestic appliance

MATERIAL AVAILABILITY:

Rod:	5mm to 200mm
Sheet:	4mm to 100mm

GRADES / COLOURS:

Tecanat: Transparent

Tecanat General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	1.20
Moisture absorption (23°C/50RH), %	DIN EN ISO 62	0.15
Water absorption to equilibrium, %	DIN EN ISO 62	0.36
MECHANICAL		
Tensile strength at yield, MPa	DIN EN ISO 527	60
Elongation at yield, %	DIN EN ISO 527	6
Tensile strength at break, MPa		
Elongation at break, %		
Modulus of elasticity in tension, MPa	DIN EN ISO 527	2,300
Modulus of elasticity after flexural test, MPa		_,
Hardness	DIN 53 456	100
Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 179 (Charpy)	n.b.
Creep rupture strength, MPa		48
after 1000 h with static load		10
Time yield limit, MPa		18
for 1% elongation after 1000 h		
Co-efficient of friction		0.52 - 0.58
$p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$		
on steel. hardened and ground		
Wear, µm/km		22
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
THERMAL		
Crystalline melting point, °C		
Glass transition temperature, °C	DIN 53 765	148
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
-	(DIN 53 461)	135
Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren B	
1	(DIN 53 461)	140
Max. service temperature, °C		
short term		140
long term		120
Thermal conductivity (23°C), $W/(K \cdot m)$		0.19
Specific heat(23°C), J/g.K		1.2
Coeff. of thermal expansion (23-55°C), $10^{-5}1/K$	DIN 53 752	7
ELECTRICAL		2
Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	3
Dielectric loss factor (10^6 Hz)	DIN 53 483, IEC-250	0.006
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^13
Surface resistance, Ω	DIN IEC 60093	10^15
Dielectric strength, kV/mm	DIN 53 481, IEC-243,	
	VDE 0303 Teil 2	27
Resistance to tracking	DIN 53 480,	
	VDE 0303 Teil 1	KA1
Flammability acc. to UL standard 94		V2

Tecanat is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecanat ESD 7

Polycarbonat

CHARACTERISTICS:

- Tough
- Easily welded and bonded
- Good electrical insulation
- Easily machined and polished

APPLICATIONS:

- Mechanical engineering
- Food technology
- Medical technology
- Transport and conveyor technology
- Electrical engineering
- Automotive engineering
- Precision engineering
- Domestic appliance

MATERIAL AVAILABILITY:

Rod:	4mm to 150mm
Sheet:	5mm to 100mm

GRADES / COLOURS:

Tecanat ESD 7: Translucent Clear

Tecanat ESD 7 General Properties	DIN Standard	Typical Values
PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.22 0.1
MECHANICAL Tensile strength at yield, MPa Elongation at yield, %		
Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	ASTM D 638 ASTM D 638 ASTM D 638 ASTM D 790	62 8 2,290 2,340
Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, µm/km $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground	ASTM D 256 (Izod)	6.4
THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B		
Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m)		120
Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	ASTM E 831	6.7
ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω	DIN IEC 60093 DIN IEC 60093	10^7 – 10^9 10^8 – 10^10
Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94		V2

Tecanat ESD 7 is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

Tecanat GF 30

Polycarbonat, 30% glass fibres

CHARACTERISTICS:	Tecanat GF 30	DIN	Typical
Good heat deformation resistanceRigid	General Properties	Standard	Values
 Good electrical insulation 	PHYSICAL		
• Easily welded and bonded	Density g/cm ³	DIN 53 479	1.43
APPLICATIONS:Mechanical engineering	Moisture absorption (23°C/50RH), % Water absorption to equilibrium, %	DIN EN ISO 62 DIN EN ISO 62	0.1 0.28
Automotive engineeringTransport and conveyor technologyElectrical engineering	MECHANICAL Tensile strength at yield, MPa		
 Precision engineering Electrical tools	Elongation at yield, % Tensile strength at break, MPa Elongation at break, %	DIN EN ISO 527 DIN EN ISO 527	130 2.5
• Insulators	Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN ISO 527	7,500
MATERIAL AVAILABILITY:	Hardness	ISO 2039/1	
Rod:5mm to 150mmSheet:4mm to 100mm	Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	(Kugeldruck-Härte, 358N) DIN EN ISO 179 (Charpy)	148 55 > 50
GRADES / COLOURS: Tecanat GF 30: Tanslucent	after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction		> 50
	$p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu \text{m/km}$		
	$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$ on steel. hardened and ground		
	THERMAL		
	Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	148
	Heat distortion temperature, °C HDT. Method B	(DIN 53 461)	142
	Max. service temperature, °C short term long term		140 120
	Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		0.26
	Coeff. of thermal expansion (23-55°C), 10^{-5} 1/K	DIN 53 752	3
	ELECTRICAL		
	Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	3.3
	Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm	DIN 53 483, IEC-250 DIN IEC 60093	0.009 10^16
	Surface resistance, Ω Dielectric strength, kV/mm	DIN IEC 60093 DIN IEC 60093 DIN 53 481, IEC-243,	10^14
	Resistance to tracking	VDE 0303 Teil 2 DIN 53 480,	30
	Flammability acc. to UL standard 94	VDE 0303 Teil 1	KB 160 V1

Tecanat GF 30 is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg Tecanyl Polyphenylenether

CHARACTERISTICS:

- Strong, tough
- Very good electrical insulation
- Easily welded and bonded
- Hot water resistant
- Sensitive to stress cracking

APPLICATIONS:

- Mechanical engineering
- Automotive engineering
- Transport and conveyor technology
- Electrical engineering
- Precision engineering
- Domestic appliance
- Food technology
- · Medical technology

MATERIAL AVAILABILITY:

Rod: 4mm to 200mm Sheet: 5mm to 80mm

GRADES / COLOURS:

Tecanyl: Dark Grey

Tecanyl General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	1.06
Moisture absorption (23°C/50RH), %	DIN EN ISO 62	0.1
Water absorption to equilibrium, %	DIN EN ISO 62	0.2
		0.2
MECHANICAL	DIMENTICO 505	~ ~
Tensile strength at yield, MPa	DIN EN ISO 527	55
Elongation at yield, %	DIN EN ISO 527	5
Tensile strength at break, MPa		
Elongation at break, %		
Modulus of elasticity in tension, MPa	DIN EN ISO 527	2,300
Modulus of elasticity after flexural test, MPa		
Hardness	DIN 53 456 (Kugeldruckhärte)	125
Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 179 (Charpy)	n.b.
Creep rupture strength, MPa		
after 1000 h with static load		
Time yield limit, MPa		21
for 1% elongation after 1000 h		
Co-efficient of friction		0.4
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		00
Wear, μ m/km p = 0.05 N/mm ² v=0.6 m/s		90
on steel. hardened and ground		
_		
THERMAL		
Crystalline melting point, °C		
Glass transition temperature, °C	DIN 53 765	150
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
	(DIN 53 461)	130
Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren B	
	(DIN 53 461)	138
Max. service temperature, °C	, , ,	
short term		110
long term		85
Thermal conductivity (23°C), W/(K·m)		0.22
Specific heat (23°C), J/g.K		1.2
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	7
ELECTRICAL	DD1 52 402 100 050	2.4
Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	2.6
Dielectric loss factor (10^6 Hz)	DIN 53 483, IEC-250	0.001
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^13
Surface resistance, Ω	DIN IEC 60093	10^15
Dielectric strength, kV/mm	DIN 53 481, IEC-243,	
	VDE 0303 Teil 2	50
Resistance to tracking	DIN 53 480,	
	VDE 0303 Teil 1	KA 1
Flammability acc. to UL standard 94		HB

Tecanyl is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecanyl GF 30

Polyphenylenether, 30% glass fibres

CHARACTERISTICS:

- Very rigid
- Very good electrical insulation
- High dimensional stability
- Hot water resistant
- Sensitive to stress cracking
- Easily welded and bonded

APPLICATIONS:

- Electrical engineering
- Energy technology
- Precision engineering
- Domestic appliance
- Mechanical engineering
- Automotive engineering
- Transport and conveyor technology

MATERIAL AVAILABILITY:

Rod:	4mm to 200mm
Sheet:	5mm to 80mm

GRADES / COLOURS:

Tecanyl GF 30: Beige

Tecanyl GF 30 General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	1.29
Moisture absorption (23°C/50RH), %	DIN EN ISO 62	0.05
Water absorption to equilibrium, %	DIN EN ISO 62	0.18
MECHANICAL		
Tensile strength at yield, MPa		
Elongation at yield, %		
Tensile strength at break, MPa	DIN EN ISO 527	105
Elongation at break, %	DIN EN ISO 527	2
Modulus of elasticity in tension, MPa	DIN EN ISO 527	8,000
Modulus of elasticity after flexural test, MPa		
Hardness		
Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load	DIN EN ISO 179 (Charpy)	30
Time yield limit, MPa for 1% elongation after 1000 h		47
Co-efficient of friction		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
Wear, µm/km		
$p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		
on steer. nardened and ground		
THERMAL		
Crystalline melting point, °C		
Glass transition temperature, °C	DIN 53 765	150
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
	(DIN 53 461)	135
Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren B	
	(DIN 53 461)	143
Max. service temperature, °C		
short term		110
long term		85
Thermal conductivity (23°C), W/(K·m)		1.24
Specific heat (23°C), J/g.K	DIN 52 752	1.34
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	3
ELECTRICAL		
Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	3.1
Dielectric loss factor (10 ⁶ Hz)	DIN 53 483, IEC-250	0.0021
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^15
Surface resistance, Ω	DIN IEC 60093	10^15
Dielectric strength, kV/mm	DIN 53 481, IEC-243,	
	VDE 0303 Teil 2	50
Resistance to tracking	DIN 53 480,	
	VDE 0303 Teil 1	KB 250
Flammability acc. to UL standard 94		HB

Tecanyl GF 30 is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecapeek^{тм}

(Polyetheretherketone)

CHARACTERISTICS:

- Excellent flexural, impact, and tensile characteristics
- Very high continuous working temperature
- Very high heat distortion temperature
- Exceptional chemical resistance
- A superior dielectric at high
- temperatures and frequenciesGood radiation resistance

- Outstanding wear and abrasion resistance
- Low smoke and toxic gas emissions
- Excellent hydrolysis resistance

APPLICATIONS:

• Automotive, marine, nuclear, oil well, electronics, medical and aerospace fields

MATERIAL AVAILABILITY:

Rod: 3/16" to 5" Sheet: 1/4" to 4"

GRADES / COLOURS:

Tecapeek™:Grey Brown, BlackTecapeek™ GF30:Light BrownTecapeek™ CF30:BlackTecapeek™ PVX:Black

Tecapeek™ General Properties	ASTM or UL Test	Tecapeek	Tecapeek GF30	Tecapeek CF30	Tecapeek PVX
PHYSICAL					
Specific Gravity gm/cm ³	D792	1.32	1.49	1.40	1.48
Water Absorption %, @24 hrs., 73°F	D570	0.5	0.11	0.06	_
@Equilibrium, 73°F	D570	0.5	-	_	-
MECHANICAL					
Tensile Strength, @ Yield, 73°F, psi	D638	14,000	22,800	30,200	17,300
Tensile Modulus, 1% Sec, 73°F, psi	D638	522,100	1,406,800	1,885,400	
Elongation, Yield, 73°F, %	D638	4.9	_	_	_
Elongation Ultimate, 73°F, %	D638	50.0	2.2	1.3	2.5
Flexural Strength, 73°F, psi	D790	27,700	33,800	46,100	30,000
Flexural Modulus, Tangent, 73°F, psi	D790	530,000	1,495,200	1,885,400	1,400,000
Compressive Strength, 73°F, psi	D695	17,100	31,200	34,800	22,000
Shear Strength Ultimate, 73°F, psi	D3846	7,600	14,100	14,100	_
Izod Impact, Notched, 73°F, ft-lbs/in	D256	1.55	1.8	1.6	3.25
Rockwell, Hardness	D785	M99	M103	M107	_
Limiting PV @68°F 1200 in/min (psi) (ft/min)	_	170,000	_	385,000	_
Coeff. of Friction, @68°F					
1200 in/min, 155 lbs Load, µ	D1894-95	0.18	-	0.22	0.19 - 0.21
THERMAL					
Deflection Temp., @264 psi,1/4", °F	D648	285	600	600	530
Maximum Continuous Use Temp., °F	_	482	482	482	500
Melting Point, °F	_	633	633	633	633
Coeff. of Thermal Expansion, in/in-°F	D696	2.6 x 10 ⁻⁵	1.2 x 10 ⁻⁵	0.8 x 10 ⁻⁵	3.11 x 10 ⁶
Thermal Conductivity, Btu-in/hr-ft ² -°F	C177	1.7	3.0	6.37	-
Flammability	UL94	V-O	V-O	V-O	-
ELECTRICAL					
Volume Resistivity, 73°F, V/mil	D149	500	_	_	_
Dielectric Strength, ohm-cm	D257	4.9 x 10 ¹⁶	_	1.4 x 10 ⁵	1.4 x 10 ⁵

Tecapeek[™] is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecapeek CF 30

Polyetheretherketon, 30% carbon fibre

CHARACTERISTICS:High thermal and mechanical capacity	Tecapeek CF 30 General Properties	DIN Standard	Typical Values
 Very high dimensional stability Very creep resistant Excellent wear resistance Resistant to numerous detergents Inherent low flammability (UL94 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), % Water absorption to equilibrium, %	DIN 53 479 DIN EN ISO 62 DIN EN ISO 62	1.44 0.1 0.1
V-O)Easily machinedResistant to hydrolysis and superheated steamGood radiation-resistance	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527	215 1.5 18,500
 APPLICATIONS: Mechanical engineering Automotive engineering Packaging and paper processing 	Modulus of elasticity after flexural test, MPa Hardness	DIN EN ISO 178 ISO 2039/1 (Kugeldruck-Härte, 961N)	20,000 256
 A characteristic and paper processing machinery Chemical engineering Aircraft and aerospace industries Static/dynamic high bearing 	Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction	DIN EN ISO 179 (Charpy)	35
MATERIAL AVAILABILITY: Rod: 5mm to 100mm Sheet: 6mm to 50mm	$p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		
GRADES / COLOURS: Tecapeek CF 30: Black	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	143
	Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K	(DIN 53 461)	315 300 260 0.92
	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K ELECTRICAL	DIN 53 752	1.5
	Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking	DIN IEC 60093 DIN IEC 60093	10^5 - 10^7 10^5 - 10^7
	Flammability acc. to UL standard 94		V0

Tecapeek CF 30 is the registered trademark of Ensinger Gmbh

Tecapeek ELS

Polyetheretherketon, carbon fibre

CHARACTERISTICS:High thermal and mechanical capacityElectrically conductive	Tecapeek ELS General Properties	DIN Standard	Typical Values
 Creep resistant Good chemical resistance Hydrolysis resistant Good radiation-resistance High dimensional stability Wear resistant 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), % Water absorption to equilibrium, % MECHANICAL	DIN 53 479 DIN EN ISO 62 DIN EN ISO 62	1.44 0.1 0.2
 APPLICATIONS: Mechanical engineering Computer technology Vacuum technology Aircraft and aerospace industries Semiconductor technology Wafer baskets, wafer carrier Parts for ultra pure water systems MATERIAL AVAILABILITY: Rod: 5mm to 150mm Sheet: 8mm to 50mm GRADES / COLOURS: Tecapeek [®] ELS: Black	Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m}/\text{km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 ASTM D 785 DIN EN ISO 179 (Charpy)	175 1 15,500 M105 30
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 765 DIN 53 752	143 300 260 0.9 1.5
	ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94	DIN IEC 60093 DIN IEC 60093	10^2 - 10^4 10^1 - 10^3 V0

Tecapeek ELS is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecapeek HT

Polyetherketon

CHARACTERISTICS:

- High thermal and mechanical capacity
- Inherent low flammability (UL94 V-O)
- Excellent sliding properties
- Wear resistant
- Electrically insulating
- Resistant to cleaning agents and numerous solvents and detergents
- Creep resistant
- Good radiation-resistance

APPLICATIONS:

•	Mechanical engineering
٠	Automotive engineering

- Transport and conveyor technology
- Chemical engineering
- Semi conductor equipment
- Electronic industry

MATERIAL AVAILABILITY:

Rod:5mm to 150mmSheet:5mm to 70mm

GRADES / COLOURS:

Tecapeek HT: Black

Tecapeek HT General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	1.32
Moisture absorption (23°C/50RH), %		
Water absorption to equilibrium, %		
MECHANICAL		
Tensile strength at yield, MPa	DIN EN ISO 527	110
Elongation at yield, %	DIN EN ISO 527	10
Tensile strength at break, MPa		
Elongation at break, %	DIN EN ISO 527	20
Modulus of elasticity in tension, MPa	DIN EN ISO 527	3,800
Modulus of elasticity after flexural test, MPa		4,100
Hardness	ASTM D 785 (Rockwell)	R108
Impact strength 23°C (Charpy), KJ/m ²	ASTM D 256 (Izod)	52
Creep rupture strength, MPa		
after 1000 h with static load		
Time yield limit, MPa		
for 1% elongation after 1000 h		
Co-efficient of friction		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
Wear, µm/km		
p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground		
on steel, nardened and ground		
THERMAL		
Crystalline melting point, °C	DIN 53 765	374
Glass transition temperature, °C	DIN 53 765	157
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	
	(DIN 53 461)	165
Heat distortion temperature, °C HDT. Method B		
Max. service temperature, °C		
short term		
long term		260
Thermal conductivity (23℃), W/(K·m)		
Specific heat (23°C), J/g.K		
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	ASTM D 696	5.7
ELECTRICAL		2.2
Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	3.3
Dielectric loss factor (10^6 Hz)	IEC 112	0.0035
Specific volume resistance, Ω^* cm	EC 93	10^16
Surface resistance, Ω		
Dielectric strength, kV/mm		
Resistance to tracking		
Flammability acc. to UL standard 94		V0

Tecapeek HT is the registered trademark of Ensinger Gmbh

Tecapeek MT

Polyetheretherketon

 CHARACTERISTICS: Resistant to hydrolysis and superheated steam 	Tecapeek MT General Properties	DIN Standard	Typical Values
 Very creep resistant Very good chemical resistance Very good stress cracking resistance FDA-compliant Good sliding properties 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.32 0.1
Easily machinedGood radiation resistance	MECHANICAL Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527 DIN EN ISO 527	95 5
APPLICATIONS:Medical technologyFood technology	Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa	DIN EN ISO 527	3,000
 Mechanical engineering Packaging and paper processing machinery 	Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 178 ASTM D 785 DIN EN ISO 179 (Charpy)	4,100 M99 n.b.
 Surgical instruments Pump housing, bearing bush Gear wheels Sterilisation tanks MATERIAL AVAILABILITY: Rod: 5mm to 200mm Sheet: 5mm to 100mm	Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.30-0.38
GRADES / COLOURS:	THERMAL		
Tecapeek MT: Blue	Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	143
	Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B (DIN 53 461)	140 182
	Max. service temperature, °C short term long term		300 260
	Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	0.25 0.32 5.0
	ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm	DIN 53 483, IEC-250 DIN 53 483, IEC-250 DIN IEC 60093 DIN IEC 60093 DIN 53 481, IEC-243, VDE 0303 Teil 2	3.2-3.3 0.001 - 0.004 10^16 10^15 20
	Resistance to tracking Flammability acc. to UL standard 94		V0

Tecapeek MT is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecapei ESD 7

Polyetherimid, carbon nanotubes

CHARACTERISTICS:Defined static conductivityHigh heat deflection temperature	Tecapei ESD 7 General Properties	ASTM or UL Test	Typical Values
 High thermal and mechanical capacity Low thermal expansion Low creep High dimensional stability 	PHYSICAL Density g/cm ³ Water absorption to equilibrium, %	ASTM D 792 ASTM D 570	1.26 0.25
 APPLICATIONS: Semiconductor technology Mechanical engineering Test sockets, wafer handling MATERIAL AVAILABILITY: Rod: 4mm to 150mm Sheet: 6mm to 80mm GRADES / COLOURS: Tecapei ESD 7: Black	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m}/\text{km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground	ASTM D 638 ASTM D 638 ASTM D 638 ASTM D 790 ASTM D 785 (Rockwell) ASTM D 256 (Izod)	65 4 2,760 2,920 123 R 7.5
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivityn(23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	ASTM E 831	200 170 5.2*
	ELECTRICAL Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94	ESD-STM 11.12 EOS/ESD \$11.11	10^6 – 10^8 10^8 – 10^10 V0

Tecapei ESD 7 is the registered trademark of Ensinger Gmbh

Tecaran ABS

Acrylnitril-Butadien-Styrol-Pfropfcopolymer

CHARACTERISTICS: • Very rigid	Tecaran ABS	DIN	Typical
 Very good electrical insulation 	General Properties	Standard	Values
Shock absorbing	PHYSICAL		
• Low density	Density g/cm ³	DIN 53 479	1.06
Low moisture absorption	Moisture absorption (23°C/50RH), %	DIN EN ISO 62	0.4
 Resistant to cleaning agents and diluted acids 	Water absorption to equilibrium, %	DIN EN ISO 62	0.7
Easily bonded			
Easily machined	MECHANICAL	DIN EN 180 527	50
5	Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527	50
APPLICATIONS:	Tensile strength at break, MPa		
 Electrical engineering 	Elongation at break, %		
Automotive engineering	Modulus of elasticity in tension, MPa	DIN EN ISO 527	2,400
Precision engineering Sefety engineering	Modulus of elasticity after flexural test, MPa		
Safety engineeringMachine construction	Hardness	DIN 53 456	85
Precision engineering	Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN EN ISO 179 (Charpy)	220 28
Domestic appliance	after 1000 h with static load		20
	Time yield limit, MPa		17
MATERIAL AVAILABILITY:	for 1% elongation after 1000 h		
Rod: 4mm to 200mm	Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$		0.5
Sheet: 5mm to 100mm	p = 0.05 N/mm = 0.06 m/s on steel. hardened and ground		
CDADES / COLOUDS.	Wear, µm/km		8.4
GRADES / COLOURS: Tecaran ABS: Ivory	$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
recarali ADS. TVOry	on steel. hardened and ground		
	THERMAL		
	Crystalline melting point, °C		
	Glass transition temperature, °C	DIN 53 765	115
	Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A (DIN 53 461)	82 - 104
	Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren A	02 - 104
		(DIN 53 461)	96 - 108
	Max. service temperature, °C		
	short term		100
	long term		75
	Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		0.17
	Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	1.2 8-11
	-	DIT 35 152	0 11
	ELECTRICAL		
	Dielectric constant (10^6 Hz)	DIN 53 483, IEC-250	3.3
	Dielectric loss factor (10 ⁶ Hz)	DIN 53 483, IEC-250 DIN IEC 60093	0.015
	Specific volume resistance, Ω^* cm Surface resistance, Ω	DIN IEC 60093 DIN IEC 60093	10^15 10^13
	Dielectric strength, kV/mm	DIN 1EC 00093 DIN 53 481, IEC-243,	10 13
	<i>a</i> , · · ·	VDE 0303 Teil 2	> 22
	Resistance to tracking	DIN 53 480,	
		VDE 0303 Teil 1	KA 3b
	Flammability acc. to UL standard 94		HB

Tecaran ABS is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecason P

Polyphenylsulfon

CHARACTERISTICS:

- High thermal and mechanical capacity
- High impact strength and notched impact strength
- Inherently flame retardant (UL94 V-O)
- Good chemical resistance
- High hardness and rigidity
- Good hydrolysis resistance
- High heat deflechtion temperature
- Food contact notification

APPLICATIONS:

- Medical technology
- Food technology
- Electrical engineering
- Chemical engineering
- Surgical instruments, sterilisation trays, food handling, valve bodies, seals

MATERIAL AVAILABILITY:

Rod:4mm to 150mmSheet:5mm to 80mm

GRADES / COLOURS:

Tecason[®] P: Transparent, amber

Tecason P General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.29 0.37
	DIN EN 150 02	0.57
MECHANICAL Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527	70
Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 178	> 50 2,350 2,600
Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 179 (Kerbschl., Charpy)	31
Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu\text{m/km}$ $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		
THERMAL Crystalline melting point, °C		
Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 ISO-R 75 Verfahren A	220
Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B	207
Max. service temperature, °C	(DIN 53 461)	214
short term		190
long term		170
Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		0.35
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	5.6
ELECTRICAL		
Dielectric constant (10 ⁶ Hz) Dielectric loss factor (10 ⁶ Hz)	DIN 53 483, IEC-250	3.45
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^15
Surface resistance, Ω	DIN IEC 60093	10^13
Dielectric strength, kV/mm	DIN 53 481, IEC-243, VDE 0303 Teil 2	15
Resistance to tracking Flammability acc. to UL standard 94		V0

Tecason P is the registered trademark of Ensinger Gmbh

Tecason S

Polysulfon

CHARACTERISTICS:

- High thermal and mechanical capacity
- Good electrical insulation
- High hardness and rigidity
- Good weldability
- Inherently flame retardant (UL94 V-O)
- Good gamma radiation resistance
- High heat deflechtion temperature

APPLICATIONS:

- Food technology
- Medical technology
- Electrical engineering
- Mechanical, automotive and chemical engineering
- Pumps and instrument manufacture
- Precision engineering

MATERIAL AVAILABILITY:

Rod: 4mm to 200mm Sheet: 5mm to 80mm

GRADES / COLOURS:

Tecason S: Transparent, yellowish

Tecason S General Properties	DIN Standard	Typical Values
PHYSICAL		
Density g/cm ³	DIN 53 479	1.24
Moisture absorption (23°C/50RH), %	DIN EN ISO 62	0.2
MECHANICAL		
Tensile strength at yield, MPa	DIN EN ISO 527	80
Elongation at yield, %	DIN EN ISO 527	6
Tensile strength at break, MPa	DIN EN 190 527	> 50
Elongation at break, % Modulus of elasticity in tension, MPa	DIN EN ISO 527 DIN EN ISO 527	> 50 2,600
Modulus of elasticity after flexural test, MPa		2,000
Hardness	DIN 53 456 (Kugeldruckhärte)	147
Impact strength 23°C (Charpy), KJ/m ²	DIN EN ISO 179 (Charpy)	n.b.
Creep rupture strength, MPa		42
after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h		22
Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km		0.4
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$ on steel. hardened and ground		
THERMAL		
Crystalline melting point, °C		
Glass transition temperature, °C	DIN 53 765	180
Heat distortion temperature, °C HDT. Method A	ISO-R 75 Verfahren A	1(0
Hast distortion temperature °C UDT Mathed D	(DIN 53 461)	169
Heat distortion temperature, °C HDT. Method B	ISO-R 75 Verfahren B (DIN 53 461)	181
Max. service temperature, °C	(DIR 55 401)	101
short term		180
long term		160
Thermal conductivity (23°C), W/(K·m)		0.25
Specific heat (23°C), J/g.K		1
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	5.5
ELECTRICAL		
Dielectric constant (10 ⁶ Hz)	DIN 53 483, IEC-250	3.1
Dielectric loss factor (10^6 Hz)	DIN 53 483, IEC-250	0.005
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^16
Surface resistance, Ω	DIN IEC 60093	10^14
Dielectric strength, kV/mm	DIN 53 481, IEC-243, VDE 0303 Teil 2	42
Resistance to tracking	DIN 53 480,	42
	VDE 0303 Teil 1	KA 1 KB 175
Flammability acc. to UL standard 94		V0

Tecason S is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecast T

PA 6 G

CHARACTERISTICS:

- Very easily machined
- Wear resistant
- Shock absorbing
- Electrically insulating
- Good sliding properties
- Resistant to many oils, greases, diesels and petrol

APPLICATIONS:

- Mechanical engineering
- Automotive engineering
- Gears, couplings and engine construction
- Packaging and paper processing machinery
- Printing machinery

MATERIAL AVAILABILITY:

Rod:20mm to 400mmSheet:8mm to 100mm

GRADES / COLOURS:

Tecast T: Natural, Ivory, Blue

Tecast T General Properties	DIN Standard	Typical Values
PHYSICAL Density g/cm ³	DIN 53 479	1.15
Moisture absorption (23°C/50RH), % Water absorption to equilibrium, %	DIN 53 475 DIN EN ISO 62 DIN 53 495	2.5 6.0-7
MECHANICAL Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527	85 / 60
Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN ISO 527 DIN EN ISO 527	3 / 50 3,300 / 1,700
Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN 53 456 (Kugeldruckhärte) DIN EN ISO 179 (Charpy)	90-160 n.b. 50
after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h		5
Co-efficient of friction $p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, $\mu \text{m/km}$ $p = 0.05 \text{ N/mm}^2 \text{v}=0.6 \text{ m/s}$ on steel. hardened and ground		0.4
THERMAL		
Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 DIN 53 765 ISO-R 75 Verfahren A	220 40 / 5
Heat distortion temperature, °C HDT. Method B	(DIN 53 461) ISO-R 75 Verfahren B	95
Max. service temperature, °C	(DIN 53 461)	195
short term long term		180 100
Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K		0.24 1.7
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	6
ELECTRICAL Dielectric constant (10 ⁶ Hz)	DIN 53 483, IEC-250	3.7
Dielectric constant (10 Hz) Dielectric loss factor (10^6 Hz)	DIN 53 483, IEC-250	0.03 - 0.30
Specific volume resistance, Ω^* cm	DIN IEC 60093	10^12 - 5*10^14
Surface resistance, Ω Dielectric strength, kV/mm	DIN IEC 60093 DIN 53 481, IEC-243,	5*10^12
Resistance to tracking	VDE 0303 Teil 2 DIN 53 480,	50
Flammability acc. to UL standard 94	VDE 0303 Teil 1	KA 3c KA 3b HB

Tecast T is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

A LEADER IN CUSTOMER SERVICE

Tecast TM

PA 6 G Molibdändisulfid

CHARACTERISTICS:

- Shock absorbing
- Not electrically insulating
- Good sliding properties even in dry running conditions
- Resistant to many oils and greases
- Increased surface hardness
- UV and weather resistant
- Very easily machined

APPLICATIONS:

- Mechanical engineering
- Automotive engineering
- Gears, couplings and engine construction
- Packaging and paper processing machinery
- Printing machinery

MATERIAL AVAILABILITY:

Rod:	20mm to 200mm
Sheet:	8mm to 100mm

GRADES / COLOURS:

Tecast TM: Black

Tecast TM General Properties	DIN Standard	Typical Values
PHYSICAL Density g/cm ³	DIN 53 479	1.15
Water absorption to equilibrium, %	DIN 53 479 DIN 53 495	6
MECHANICAL		
Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa	DIN EN ISO 527	75
Elongation at break, %	DIN EN ISO 527	40 / 60*
	DIN EN ISO 527 DIN EN ISO 527	
Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN 150 527	2,800
Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa	DIN 53 456 (Kugeldruckhärte) DIN EN ISO 179 (Charpy)	145
after 1000 h with static load Time yield limit, MPa		
for 1% elongation after 1000 h		
Co-efficient of friction		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground Wear, μm/km		
$p = 0.05 \text{ N/mm}^2 \text{v} = 0.6 \text{ m/s}$		
on steel. hardened and ground		
THERMAL		
Crystalline melting point, °C	DIN 53 765	210
Glass transition temperature, °C	DIN 53 765	40 / 5
Heat distortion temperature, °C HDT. Method A		
Heat distortion temperature, °C HDT. Method B		
Max. service temperature, °C		
short term		170
long term		100
Thermal conductivity (23°C), W/(K·m)		
Specific heat (23°C), J/g.K		
Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	9.5
ELECTRICAL		
Dielectric constant (10^6 Hz)		
Dielectric loss factor (10^6 Hz)		
Specific volume resistance, Ω^* cm		
Surface resistance, Ω		
Dielectric strength, kV/mm		
Resistance to tracking		
Flammability acc. to UL standard 94		HB

Tecast TM is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

Tecast VektonTM

Cast nylon

CHARACTERISTICS:

- Good mechanical properties, excellent bearing and wear charateristics.
- Tecast Vekton[™] ideal for metal replacement applications
- Excellent wear and abrasion resistance
- Good machinability
- Very tough and impact resistance
- Good chemical resistance
- Tecast Vekton[™] 6PA Natural
 An EDA compliant cost type 6 n
- An FDA-compliant cast type 6 nylon • Tecast Vekton[™] 6PA Black A black cast type 6 nylon that is more
- UV resistant • Tecast Vekton[™] 6PA Blue
- A blue cast type 6 nylon
- Tecast Vekton[™] 6PAM A molybdenum disuifide-filled cast type 6 nylon

- Tecast Vekton[™] 6PAG
- A graphita powder-filled cast type 6 nylon • Tecast Vekton[™] 6XAU
- A high heat (up to 260°F continuous), weather resistant cast type 6 nylon
 Tecast Vekton™ 6PAL
- An oil-filled cast type 6 nylon

APPLICATIONS:

 Ideal for bearings, thrust washers, bushings, wear pads, sheaves, rollers, gears, sprockets, and wheels. Tecast Vekton™ is commonly used in construction e quipment, material handling systems, pulp and paper processing equipment, steel mills and industrial equipment.

MATERIAL AVAILABILITY:

Rod: 2" to 20" Sheet: 1/4" to 4"

GRADES / COLOURS:

Tecast Vekton[™] 6PA: Natural, Black, Blue Tecast Vekton[™] 6XAU: Black Tecast Vekton[™] 6PAM & 6PAG: Black Tecast Vekton[™] 6PAL: Natural & Black

Tecast Vekton™ General Properties	ASTM or UL Test	Tecast Vekton 6PA	Tecast Vekton 6XAU	Tecast Vekton 6PAM 6PAG	Tecast Vekton 6PAL
PHYSICAL Specific Gravity g/cc Water Absorption %, @24 hrs., 73°F @Saturation, 73°F	D792 D570 D570	1.15 – 1.16 1.2 –	1.15 – 1.16 1.2 –	1.15 – 1.17 1.2 –	1.14 – 1.15 0.75 –
MECHANICAL Tensile Strength, psi, @Yield, 73°F Tensile Modulus, psi Elongation @ Break, %, 73°F Flexural Strength, psi, 73°F Compressive Strength, psi Izod Impact Strength, 73°F, ft-lb/in Rockwell,Hardness, "R" Scale Shure,Hardness, "D" Scale Wear Factor Against Steel, 40 psi, 50 fpm in ³ / hr x 1 / PV Static Coeff. of Friction Dynamic Coeff. of Friction, 40 psi, 50 fpm	D638 D638 D790 D790 D695 D256 D785 - D3702 D3702 D3702	$ \begin{array}{r} 10,000\\ 350,000\\ 25\\ 12,500\\ 350,000\\ -\\ 0.6\\ 115\\ -\\ 200 \times 10^{-10}\\ 0.26\\ \end{array} $	11,000 350,000 20 12,500 350,000 - 0.7 115 - -	11,000 350,000 20 12,500 350,000 - 0.6 115 - -	8,800 350,000 25 12,500 325,000 - 1.2 100 - -
THERMAL Heat Deflection Temp., @66 psi, °F @264 psi, °F Coeff. of Thermal Expansion, in/in-°F Maximum Servicing Temp. Intermittent, °F Long Term, °F Specific Heat, BTU/lb-°F Thermal Conductivity Vicate Softening Point, °F Melting Point, °F Flammability	D5702 D648 D696 - UL7468 - D2133 UL94	370 200 4.0 x 10 ⁻⁵ 300 200 0.40 1.67 - 428 HB	- 370 200 4.0 x 10 ⁻⁵ 350 260 - - 428 -	$ \begin{array}{c} 370 \\ 200 \\ 4.0 \times 10^{-5} \\ 300 \\ 200 \\ - \\ - \\ $	- 4.0 x 10 ⁻⁵ 330 200 - - 428 -
ELECTRICAL Surface Resistivity, ohm/square Volume Resistivity, ohm-cm Dielectric Strength, Volts/mil Dielectric Constant, @60 Hz, 73°F, 50%, RH @ 1 MHz @ 20 GHz @ 30 MHz Dissipation Factor, @ 60 HZ, 73°F	D257 D257 D149 D150 D150 D150 D150 D150			- 500 3.7 - - -	- - - - - - - - - -

Tecast Vekton[™] is the registered trademark of Ensinger Industries, Inc

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecator[™] PAI

CHARACTERISTICS:

- Excellent weather and gamma radiation resistance
- Outstanding bearing and wear properties
- High strength and stiffness
- Excellent electrical values
- Good chemical resistance
- Mechanical properties over a broad temperature spectrum - cryogenic to 500°F

APPLICATIONS:

- Pump parts
- Valve seats
- Piston rings
- Seal rings
- Semiconductor industry as "Burn in" test sockets, nests, chassis
- Welding nozzle tips

MATERIAL AVAILABILITY:

Rod: 0.062" to 2" Sheet: 1/4" to 1.25"

GRADES / COLOURS:

Tecator [™] TLN:	Yellow-Ochre
Tecator [™] TLB:	Black
Tecator [™] 30 GF	
(XP142T):	Khaki Grey

Tecator™ PAI General Properties	ASTM or UL Test	Tecator™ TLN	Tecator™ TLB	Tecator ™ GF 30 (XP142T)
PHYSICAL				
Specific Gravity, 73°F, gm/cc Water Absorption, % @ 24 hrs, 73°F	D792 D570	1.41 0.3	1.46 -	1.58
MECHANICAL				
Tensile Strength, 73°F, psi	D638	21,000	19,000	17,000
Tensile Elongation % at break, 73°F	D638	15	10	2
Flexural Strength, 73°F, psi	D790	33,000	23,000	21,000
Flexural Modulus, 73°F, psi	D790	711,000	870,000	821,000
Compressive Strength, 73°F, psi	D695	30,000	-	-
Izod Impact Strength (Notched), 73°F, ft-lb/in	D256	2.3	2.0	0.75
Rockwell, Hardness M Scale 73°F	D785	M 119	M109	M116
THERMAL				
Heat Deflection Temp., °F, 264 psi	D648	532	534	_
Coeff. of Linear Thermal Expansion, in/in/°F	E831	1.66 x 10 ⁻⁵	-	2.11 x 10 ⁻⁵
Continuous Service Temp, Air, °F	-	500	500	500
Falmmability (ASTM Method)	UL94	94VO	94VO	94VO
ELECTRICAL				
Dielectric Strength, V/mil	D149	600	_	450
Dielectric Constant, 10 ⁶ hz	D150	3.9	_	3.8
20 ghz	D2520	3.2	3.8	4.3
30 ghz	D2520	3.7	3.9	4.4
Surface Resistivity, ohms	D257	5.0 x 10 ¹⁶	_	
Dissipation Factor, 10 ⁶ hz	D150	0.009	_	0.005
20 ghz	D2520	0.009	0.012	0.005
30 ghz	D2520	0.005	0.018	0.008

Tecator[™] PAI is the registered trademark of Ensinger Industries, Inc.

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecatron[®] PPS

(Polyphenylene sulfide)

CHARACTERISTICS:

- Excellent chemical resistance
- Good electrical insulator
- High mechanical strength
- Corrosion resistance
- Dimensional stability over wide variations of temperature and moisture
- Creep resistance

APPLICATIONS:

- Low outgassing and high purity
- Automotive
- Electrical/electronic, industrial, mechanical, appliance and semiconductor industries

MATERIAL AVAILABILITY:

Rod: 1/4" to 9" Sheet: 1/4" to 4"

GRADES / COLOURS:

Tecatron[®]: Black/White (Natural)

Tecatron [®] PPS General Properties	ASTM or UL Test	Typical Values
PHYSICAL		
Specific Gravity (g/cm ³)	D792	1.35
Water Absorption, % @24 hrs, 73°F	D570	0.02
@Saturation, 73°F	D570	-
MECHANICAL		
Tensile Strength at yield, 73°F, psi	D638	8,700
Tensile Modulus, psi	D638	480,000
Elongation at break, 73°F, %	D638	4
Flexural Strength, 73°F, psi	D790	17,400
Flexural Modulus, 73°F, psi	D790	435,000
Compressive Strength, psi	D695	_
Izod Impact Strength 73°F, ft-lbs/in	D256	0.5
Rockwell, Hardness M	D785	M 104
Shure Hardness D	_	_
Wear Factor Against Steel, 40psi, 50 fpm in ³ / hr x 1/PV	D3702	540 x 10 ⁻¹⁰
Static Coeff. of Friction	D3702	
Dynamic Coeff. of Friction, 40psi, 50 fpm	D3702	0.24
THERMAL	D.C.I.O.	100
Heat Deflection Temp., °F, 66 psi	D648	400
264 psi	D648	220
Coeff. of Linear Thermal Expansion, in/in/°F	D696	4.0 x 10 ⁻⁶
Maximum Servicing Temp., °F, Intermittent	-	-6
Long Term	UL746B	338
Specific Heat, Btu/lb-°F	-	-
Thermal Conductivity	-	2.08
Vicate Sofening Point, °F	-	-
Melting Point, °F	D2133	540
Falmmability (mm)	UL94	V-O
ELECTRICAL		
Surface Resistivity, ohm/sq	D257	$1.0 \ge 10^{15}$
Volume Resistivity, ohm-cm	D257	_
Dielectric Strength, V/mil	D149	3.0
Dielectric Constant,@ 60 Hz, 73°F, 50% RH	D150	_
@ 1 MHz	D150	_
@ 20 GHz	D150	_
@ 30 GHz	D150	_
Dissipation Factor, @ 60 HZ, 73°F	D150	0.0001

Tecatron[®] PPS is the registered trademark of Ensinger Industries, Inc.

Tecatron GF 40 sw

Polyphenylensulfid, 40% glass fibres

CHARACTERISTICS:High thermal and mechanical capacity	Tecatron GF 40 sw General Properties	DIN Standard	Typical Values
 Very good chemical resistance Resistant to hydrolysis and superheated steam Low creep 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), %	DIN 53 479 DIN EN ISO 62	1.65 0.02
 High hardness and rigidity High dimensional stability inherently flame retardant (UL94 V-O) Continuous service temperature up to 230°C Good radiation-resistance 	MECHANICAL Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 527 DIN EN ISO 178	185 1.9 14,000 13,000
 APPLICATIONS: Transport and conveyor technology Pumps and instrument manufacture Precision engineering Chemical engineering Process technology Mechanical engineering 	Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground	DIN 53 456 (Kugeldruckhärte) DIN EN ISO 179 (Charpy)	320 45
MATERIAL AVAILABILITY:Rod:4mm to 60mmSheet:8mm to 70mm	Wear, μ m/km p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground		
GRADES / COLOURS: Tecatron GF 40 sw: Black	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A	DIN 53 765 DIN 53 765 ISO-R 75 Verfahren A (DIN 53 461)	280 90 260
	Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	260 230 0.25 1.18 ca. 3
	ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking Flammability acc. to UL standard 94	DIN 53 483, IEC-250 DIN 53 483, IEC-250 DIN IEC 60093 DIN IEC 60093 DIN 53 481, IEC-243, VDE 0303 Teil 2 DIN 53 480, VDE 0303 Teil 1	4 0.004 10^13 10^15 20 KC 175 V0

Tecatron GF 40 sw is the registered trademark of Ensinger Gmbh

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tecatron MT sw

Polyphenylensulfid

CHARACTERISTICS:

- High thermal and mechanical capacity
- High hardness and rigidity
- Continuous service temperature up to 230°c
- High dimensional stability
- Very good chemical resistance
- Good radiation-resistance
- Inherently flame retardant (UL94 V-O)
- Low creep

APPLICATIONS:

- Medical technology
- Food technology
- Surgical instruments
- Sterilisation caddies
- Food handling

MATERIAL AVAILABILITY:

Rod:4mm to 100mmSheet:5mm to 50mm

GRADES / COLOURS:

Tecatron MT sw: Black

PHYSICAL Density g/cm³ Moisture absorption (23°C/50RH), %DIN 53 479 DIN EN ISO 621.35 0.01MECHANICAL Tensile strength at yield, MPa Elongation at break, MPa Elongation at break, % Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 100 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction p = 0.05 N/mm²v=0.6 m/s on steel. hardened and groundDIN 53 765 DIN 53 765 JOIN EN ISO 179 (Charpy)280 50THERMAL Crystalline melting point, °C Glass transition temperature, °C HDT. Method A long termDIN 53 765 JIN 53 765 JSO-R 75 Verfahren A (DIN 53 361)280 260 JIN 53 765Heat distortion temperature, °C HDT. Method B Max. service temperature, °C short term long termDIN 53 752260 260 JIN 53 752ELECTRICAL Dielectric constant (10° Hz) Dielectric loss factor (10° Hz) Specific volume resistance, Ω*cmDIN IEC 60093 DIN IEC 6009310^113	Tecatron MT sw General Properties	DIN Standard	Typical Values
Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa Elongation at break, %DIN EN ISO 52775Biogration at yield, % Tensile strength at break, MPa Elongation at break, %DIN EN ISO 5273,700Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa HardnessDIN EN ISO 5273,700Impact strength 23°C (Charpy), KJ/m² Creep rupture strength, MPa after 1000 h with static load 	Density g/cm ³		
Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Wear, μ m/km $p = 0.05 \text{ N/mn}^2v=0.6 \text{ m/s}$ on steel. hardened and ground Heat distortion temperature, °C Heat distortion temperature, °C HDT. Method B Max. service temperature, °C HDT. Method B Max. Servi	Tensile strength at yield, MPa Elongation at yield, %	DIN EN ISO 527	75
THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method ADIN 53 765 DIN 53 765280 90Heat distortion temperature, °C HDT. Method A Max. service temperature, °C short term long termDIN 53 461)110Heat distortion temperature, °C short term long term260 230Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10-51/KDIN 53 7525ELECTRICAL Dielectric constant (10 ⁶ Hz) Specific volume resistance, Ω^* cmDIN IEC 6009310^13	Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm^2v=0.6 m/s}$ on steel. hardened and ground Wear, µm/km $p = 0.05 \text{ N/mm^2v=0.6 m/s}$	DIN EN ISO 527 DIN EN ISO 178 DIN 53 456 (Kugeldruckhärte)	3,700 3,600 290
$\begin{array}{c c} \mbox{long term} & 230 \\ \mbox{Thermal conductivity (23^{\circ}C), W/(K \cdot m)} & 0.25 \\ \mbox{Specific heat (23^{\circ}C), J/g.K} & 0.25 \\ \mbox{Coeff. of thermal expansion (23-55^{\circ}C), 10^{-5}1/K} & DIN 53 752 & 5 \\ \hline \mbox{ELECTRICAL} & \\ \mbox{Dielectric constant (10^{6} Hz)} & \\ \mbox{Dielectric loss factor (10^{6} Hz)} & \\ \mbox{Specific volume resistance, } \Omega^{*} cm & DIN IEC 60093 & 10^{13} \\ \hline \end{array}$	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C	DIN 53 765 ISO-R 75 Verfahren A	90 110
Dielectric constant (106 Hz)Image: Dielectric loss factor (106 Hz)Image: Dielectric loss factor (106 Hz)Specific volume resistance, Ω*cmDIN IEC 6009310^13	long term Thermal conductivity (23°C), W/(K·m) Specific heat (23°C), J/g.K	DIN 53 752	230 0.25
Surface resistance, \$2DIN IEC 6009310^15Dielectric strength, kV/mmResistance to tracking10Flammability acc. to UL standard 94V0	Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω *cm Surface resistance, Ω Dielectric strength, kV/mm Resistance to tracking	DIN IEC 60093 DIN IEC 60093	10^15

Tecatron MT sw is the registered trademark of Ensinger Gmbh

Tecatron PVX

Polyphenylensulfid, carbon fibres, PTFE, graphite

Characteristics:High thermal and mechanical capacity	Tecatron PVX General Properties	DIN Standard	Typical Values
 High hardness and rigidity Excellent sliding properties High dimensional stability Very good chemical resistance Continuous service temperature up 	PHYSICAL Density g/cm ³ Moisture absorption (23°C/50RH), % MECHANICAL	DIN 53 479 DIN EN ISO 62	1.47 0.02
to 230°C • Inherent low flammability (UL94 V-O)	Tensile strength at yield, MPa Elongation at yield, % Tensile strength at break, MPa	DIN EN ISO 527	115
Applications:Mechanical engineeringAutomotive engineering	Elongation at break, % Modulus of elasticity in tension, MPa Modulus of elasticity after flexural test, MPa	DIN EN ISO 527 DIN EN ISO 527	113 1.5 10,000
 Pumps and instrument manufacture Packaging and paper processing machinery Precision engineering Aircraft and aerospace industries 	Hardness Impact strength 23°C (Charpy), KJ/m ² Creep rupture strength, MPa after 1000 h with static load Time yield limit, MPa	DIN 53 456 (Kugeldruckhärte, 961N) DIN EN ISO 179 (Charpy)	203 20
Material Availability: Rod: 4mm to 60mm Sheet: 8mm to 70mm	for 1% elongation after 1000 h Co-efficient of friction $p = 0.05 \text{ N/mm}^2\text{v}=0.6 \text{ m/s}$ on steel. hardened and ground Wear, µm/km		0.21
Grades / Colours: Tecatron PVX: Black	p = 0.05 N/mm ² v=0.6 m/s on steel. hardened and ground		0.05
	THERMAL Crystalline melting point, °C Glass transition temperature, °C Heat distortion temperature, °C HDT. Method A Heat distortion temperature, °C HDT. Method B Max. service temperature, °C	DIN 53 765 DIN 53 765	280 90
	short term long term Thermal conductivity (23°C), W/(K·m)		260 230
	Specific heat (23°C), J/g.K Coeff. of thermal expansion (23-55°C), 10 ⁻⁵ 1/K	DIN 53 752	3 – 4
	ELECTRICAL Dielectric constant (10^6 Hz) Dielectric loss factor (10^6 Hz) Specific volume resistance, Ω^* cm Surface resistance, Ω Dielectric strength, kV/mm	DIN IEC 60093 DIN IEC 60093	4*10^5 1*10^6
	Resistance to tracking Flammability acc. to UL standard 94		V0

Tecatron[®] PVX is the registered trademark of Ensinger Gmbh

Techtron[®] PPS

Polyphenylene sulfide, unfilled, extruded

CHARACTERISTICS:	Techtron [®] PPS	ASTM or	Typical
• Excellent wear and frictional behavior	General Properties	UL Test	Values
• Excellent chemical and hydrolysis	PHYSICAL		
resistance		D702	1.25
 Good electrical insulating and 	Specific Gravity (g/cm ³)	D792	1.35
dielectric properties	Water Absorption Immersion, 24 hr., %	D570	0.01
 Excellent resistance against high 	MECHANICAL		
energy radiation		D638	12 500
	Tensile Strength, psi		13,500
APPLICATIONS:	Tensile Modulus, psi	D638	500,000
Lantern rings	Elongation, %	D638 D790	15
Pump housings	Flexural Strength, psi		21,000
• Components used in high pressure	Flexural Modulus, psi	D790	575,000
liquid chromatography	Shear Strength, psi	D732	9,000
Chip Nests	Compressive Strength, psi	D695	21,500
Retaining Rings	Compressive Modulus, psi	D695	430,000
Polishing equipment	Hardness, Rockwell M	D785	95
	Hardness, Rockwell R	D785	125
MATERIAL AVAILABILITY:	Hardness, Durometer, Shore D Scale	D2240	85
Rod: 0.25" to 4"	Izod Impact (Notched), ft-lb/in	D256	0.6
Sheet: 0.25" to 2"	Coeff. of Friction, Dynamic	Dry vs. Steel,	0.4
		PTM55007	0.4
GRADES/COLOURS:	Limiting PV, psi-fpm	PTM55007	3,000
Techtron [®] PPS: Off white, Black	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	2,400
	THERMAL		
	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.28
	Deflection Temperature 264 psi, °F	D648	250
	Melting Point (Crystalline) Peak, °F	D3418	540
	Continuous Service in Air (Max), °F	Without Load	425
	Thermal Conductivity, BTU-in/hr-ft ² -°F		2
	• · ·		
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	540
	Surface Resistance, Ohm/Square	Lower Limit;	
	· • •	EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	3
	Dissipation Factor, 1 MHz	D150(2)	0.0013
		. ,	

Techtron® PPS is the registered trademark of Quadrant Engineering Plastics Products

SUPERFIX®

Techtron[®] PPS (CM)

Polyphenylene sulfide, unfilled, compression molded

CHARACTERISTICS:High coefficient of frictionExcellent wear and frictional	Techtron [®] PPS (CM) General Properties	ASTM or UL Test	Typical Values
 behavior Excellent chemical and hydrolysis resistance Good electrical insulating and dielectric properties Excellent resistance against high 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi	D792 D570 D638	1.35 0.02 10,000
 energy radiation APPLICATIONS: Lantern rings Pump housings Components used in high pressure liquid chromatography Chip nests Retaining rings Polishing equipment 	Tensile Suengui, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale	D638 D638 D638 D790 D790 D695 D695 D785 D785 D785 D2240	10,000 325,000 5 18,000 370,000 18,000 410,000 93 125 85
MATERIAL AVAILABILITY: Rod: 0.25" to 4" Sheet: 0.25" to 2" GRADES/COLOURS:	Izod Impact (Notched), ft-lb/in Coeff. of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	0.6 0.4 3,000 2,000
Techtron [®] PPS (CM): Off white, Black	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.28 250 540 425 2
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	540 1E+13 3 0.0013

Techtron[®] PPS is the registered trademark of Quadrant Engineering Plastics Products

Techtron[®] HPV

Polyphenylene Sulfide, bearing grade, extruded

 CHARACTERISTICS: Very high max. allowable service temperature in air (220°C 	Techtron [®] HPV General Properties	ASTM or UL Test	Typical Values
 continuously to 260°C for short periods of time) High mechanical strengh, stiffness and creep resistance also at elevated temperatures Excellent chemical and hydrolysis resistance Excellent wear and frictional behaviour Very good dimensional stability Excellent resistance against high energy radiation (gamma and X-rays) Good UV-resistance Inherent low flammability Good electrical insulating and dielectric properties 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Hardness, Rockwell M Izod Impact (Notched), ft-lb/in Coeff. of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D792 D570 D638 D638 D638 D790 D790 D790 D785 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	$1.43 \\ 0.01 \\ 10,900 \\ 540,000 \\ 5 \\ 10,500 \\ 535,000 \\ 84 \\ 1.4 \\ 0.16 \\ 17,000 \\ 85 \\ 1.4$
 APPLICATIONS: Lantern rings Pump housings Components used in high pressure liquid chromatography Chip nests Testing of semiconductor packages Retaining rings Polishing equipment MATERIAL AVAILABILITY: Rod: 2.36" to 3.94" Sheet: 0.197" to 3.15"	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Melting Point (Crystalline) Peak, °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square	E831 (TMA) D648 D3418 Without Load D149(2) Lower Limit; EOS/ESD S11.11	0.33 240 536 430 2.1 500 1E+13

GRADES/COLOURS:

Techtron[®] HPV: Deep blue

Techtron[®] HPV is the registered trademark of Quadrant Engineering Plastics Products

Teflon[®] PTFE

CHARACTERISTICS:

- High chemical resistance
- Low and high temperature capability
- Wide temperature range of of -100°F to +400°F (-73°C to 204°C).
- Excellent thermal and electrical insulation properties
- Low coefficient of friction
- Adding fillers such as glass fibers, carbon, graphite, molybdenum disulphide, and bronze

APPLICATIONS:

• Sleeve, Flange or Thrust Bearings, Bushings, Guides, Rollers, Seals Sleeves

MATERIAL AVAILABILITY:

Rod: 1/4" to 8" Sheet: 1/8" to 4"

GRADES/COLOURS:

PTFE unfilled: Natural & Black PTFE 25% glass filled: Beige PTFE 25% carbon filled: Black

Teflon [®] PTFE General Properties	ASTM or UL Test	PTFE (unfilled)	PTFE (25% glass filled)	PTFE (25% carbon filled)
PHYSICAL				
Specific Gravity (g/cm ³)	D792	2.16	2.25	2.08
Water Absorption, 24 hrs (%)	D570	< 0.01	0.02	0.05
MECHANICAL				
Tensile Strength (psi)	D638	3,900	2,100	1,900
Tensile Modulus (psi)	D638	80,000	_	_
Tensile Elongation at Break (%)	D638	300	270	75
Flexural Strength (psi)	D790	No break	1,950	2,300
Flexural Modulus (psi)	D790	72,000	190,000	160,000
Compressive Strength (psi)	D695	3,500	1,000	1,700
Compressive Modulus (psi)	D695	70,000	110,000	87,000
Hardness, Shore D	D785	D50	D60	D62
IZOD Notched Impact (ft-lb/in)	D256	3.5	—	-
THERMAL				
Coeff.of Linear Thermal Expansion				
(x 10 ⁻⁵ in./in./°F)	D696	7.5	6.4	6.0
Heat Deflection Temp (°F / °C) at 264 psi	D648	132 / 55	150 / 65	150 / 65
Melting Temp (°F / °C)	D3418	635 / 335	635 / 335	635 / 335
Max Operating Temp (°F / °C)	_	500 / 260	500 / 260	500 / 260
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	1.70	3.1	4.5
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		5.86	10.6	15.5
Flammability Rating	UL94	V-O	V-O	V-O
ELECTRICAL				
Dielectric Strength (V/mil) short time, 1/8" thick	D149	285	_	_
Dielectric Constant at 1 MHz	D150	2.1	2.4	
Dissipation Factor at 1 MHz	D150	< 0.0002	0.05	_
Volume Resistivity (ohm-cm)at 50% RH	D257	> 10 ¹⁸	> 10 ¹⁵	104

Teflon® PTFE is the registered trademark of DuPont

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Tivar[®] 1000

AntiStatic UHMW Polyethylene

 CHARACTERISTICS: Good resistance to organic solvents, degreasing agents and electrolytic 	Tivar [®] 1000 General Properties	ASTM or UL Test	Typical Values
attack	PHYSICAL		
High impact strength	Specific Gravity (g/cm ³)	D792	0.93
Have low moisture absorption rates.	Water Absorption, 24 hrs (%)	D570	_
Light weight (1/8 the weight of mild			
steel), high in tensile strength, Simple to machine	MECHANICAL		
UHMW PE is self-lubricating, shatter	Tensile Strength at Break (psi)	D638	4,000
resistant, long-wearing, abrasion and	Tensile Modulus (psi)	D638	_
corrosion resistant	Tensile Elongation at Break (%)	D638	140
tatic Dissipative / Anti-Static (SD):	Flexural Strength (psi)	D790	_
Resistivity generally between 10^7 and	Flexural Modulus (psi)	D790	100,000
10^{12} ohms per square.	Compressive Strength (psi)	D695	-
Initial electrostatic charges are	Compressive Modulus (psi)	D695	-
suppressed.	Hardness, Shore D	D785	67
	IZOD Notched Impact (ft-lb/in)	D256	No Break
APPLICATIONS:			
Chemical Equipment Industry, Guide	THERMAL		
rails, deflectors, Pile driver rams,	Coeff. of Linear Thermal Expansion		
Guides, conveyor tubs	(x 10 ⁻⁵ in./in./°F)	D696	1.8 to 2.7
	Heat Deflection Temp (°F / °C) at 66 psi	D648	-
MATERIAL AVAILABILITY:	at 264 psi	D2410	_
Rod: 0.25" to 13"	Melting Temperature (°F / °C)	D3418	-
heet: 1/16" to 6"	Max Operating Temp (°F / °C) Thermal Conductivity (BTU-in/ft ² -hr-°F)	- C177	180 / 82
	$(x \ 10^{-4} \ cal/cm-sec^{\circ}C)$	CITT	_
GRADES/COLOURS:	Flammability Rating	UL94	_
Tivar [®] 1000: White, Black		0104	
	ELECTRICAL		
	Surface Resistivity (ohms/sq)	D257	$10^{5} - 10^{9}$
	Volume Resistivity (ohm-cm), Dry	D257	$10^5 - 10^9$

SUPERFIX®

Tivar[®] CleanStatTM UHMW

 CHARACTERISTICS: Anti-static, Meets FDA and USDA guidelines 	Tivar [®] CleanStat™ UHMW General Properties	ASTM or UL Test	Typical Values
• Self-lubricating, Corrosion-resistant	PHYSICAL		
• Meet D4020-81 of 4.0 to 5.4 million molecular weight	Density lb/in ³	D792	0.034
No moisture absorption	Water Absorption %	D570	0
 Eliminates static build-up problems, meets FDA and USDA guidelines 	MECHANICAL		
for food contact	Hardness, Shore D	D2240	68
 Low coefficient of friction 	Tensile Strength, Ultimate psi	D638	5,160
	Tensile Strength, Yield psi	D638	3,070
APPLICATIONS:	Elongation at Break %	D638 D638	200 15
 Chute liners, Fabricated 	Elongation at Yield % Modulus of Elasticity ksi	D638	13
components, Hopper liners,	Flexural Modulus ksi	D038 D790	119
Vibratory feeder pans	Compressive Modulus ksi	D790 D621	77.7
 Food-processing equipment 	Tensile Impact Strength ft-lb/in ²	D021 DIN 53448	702
Clean room environment, conveyor	Coefficient of Friction	Dynamic; D1894	0.12
tubs	Coefficient of Friction, Static	D1894	0.15
	Sand Wheel Wear Relative to Tivar-1000 = 100 ;	G65	130
MATERIAL AVAILABILITY: Rod: 0.25" to 13"	Izod Impact Resistance ft-lb/in ²	D4020	19.5
Sheet: 1/16" to 6"	ELECTRICAL		
	Volume Resistivity ohm-cm	D257	1e+007 – 1e+010
GRADES/COLOURS: Tivar [®] CleanStat [™] UHMV: White	Surface Resistance ohm	D257	1e+007 – 1e+010
	THERMAL		
	CTE, linear 100°C µin/in-°F	D696	100
	Melting Point °F	D3417	279 – 289
			<u> </u>]

Tivar[®] CleanStat[™] UHMW is the registered trademark of Poly Hi Solidur Inc.

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

Torlon[®] 4203 PAI

Polyamide-imide, extruded (electrical grade)

CHARACTERISTICS:	Torlon [®] 4203 PAI	ASTM or	Typical
• Offers excellent compressive strength and the highest elongation of the	General Properties	UL Test	Values
Torlon grades	PHYSICAL		
• Electrical insulation and exceptional	Specific Gravity (g/cm ³)	D792	1.41
impact strength.	Water Absorption Immersion, 24 hr., %	D570	0.4
High dielectric strength.Severe stress conditions at continuous	1		
• Severe stress conditions at continuous temperatures to 500°F (260°C)	MECHANICAL		
 Greater compressive strength and 	Tensile Strength, psi	D638	18,000
higher impact resistance	Tensile Modulus, psi	D638	600,000
Low coefficient of linear thermal	Elongation, %	D638	10
expansion and high creep resistance	Flexural Strength, psi	D790	24,000
• Torlon is an amorphous material with	Flexural Modulus, psi	D790	600,000
a Tg (glass transition temperature) of	Shear Strength, psi	D732	16,000
537°F (280°C)	Compressive Strength, psi	D695	24,000
	Compressive Modulus, psi Hardness, Rockwell E	D695 D785	475,000 80
APPLICATIONS:	Hardness, Rockwell E Hardness, Rockwell M	D785	120
 Chip nests and sockets 	Izod Impact (Notched), ft-lb/in	D783 D256	2
High temperature electrical	Coefficient of Friction, Dynamic	Dry vs. Steel,	2
connectors	Coefficient of Friction, Dynamic	PTM55007	0.35
• Labyrinth seals	Limiting PV, psi-fpm	PTM55007	12,500
Bearing cages	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	50
Can mandrelElectrical connectors			
Electrical connectorsInsulators	THERMAL		
• Insulators	Coefficient of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.17
MATERIAL AVAILABILITY:	Deflection Temperature 264 psi, °F	D648	532
Rod: 0.062" to 2"	Tg-Glass Transition (Amorphous), °F	D3418	527
Sheet: 1/4" to 1.25"	Continuous Service in Air (Max), °F	Without Load	500
511001.174 (01.25	Thermal Conductivity, BTU-in/hr-ft ² -°F		1.8
GRADES/COLOURS:			
Torlon [®] 4203 PAI: Yellow-ochre	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	580
	Surface Resistance, Ohm/Sq	Lower Limit;	15.16
	Dielectric Constant, 1 MHz	EOS/ESD S11.11	1E+16 4.2
	Dissipation Factor, 1 MHz	D150(2) D150(2)	4.2 0.026
		D130(2)	0.020

Torlon[®] 4203 PAI is the registered trademark of BP Amoco Polymers

Torlon[®] 4301 PAI

Polyamide-imide, extruded (bearing grade)

 CHARACTERISTICS: Low coefficient of friction Torlon 4301's flexural modulus of 	Torlon [®] 4301 PAI General Properties	ASTM or UL Test	Typical Values
1,000,000 psi	PHYSICAL		
 Stress conditions at continuous 	Specific Gravity (g/cm ³)	D792	1.45
temperatures to 500°F (260°C) • Greater compressive strength and	Water Absorption Immersion, 24 hr., %	D570	0.4
higher impact resistance • Low coefficient of linear thermal	MECHANICAL		
	Tensile Strength, psi	D638	12,000
expansion and high creep resistance	Tensile Modulus, psi	D638	900,000
Amorphous material with a Tg (glass 5.27 °E	Elongation, %	D638	3
transition temperature) of 537°F	Flexural Strength, psi	D790	23,000
(280°C)	Flexural Modulus, psi	D790	800,000
	Shear Strength, psi	D732	16,400
APPLICATIONS:	Compressive Strength, psi	D695	22,000
Chip nests and sockets	Compressive Modulus, psi	D695	950,000
High temperature electrical	Hardness, Rockwell E	D785	70
connectors	Hardness, Rockwell M	D785	106
Labyrinth seals	Izod Impact (Notched), ft-lb/in	D256	0.8
Bearing cages	Coeff. of Friction, Dynamic	Dry vs. Steel,	
Can mandrel		PTM55007	0.2
Seals	Limiting PV, psi-fpm	PTM55007	22,500
Non-labricated bearings	k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	PTM55007	10
MATERIAL AVAILABILITY:	THERMAL		
Rod: 1/4" to 2"	Coeff. of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.14
Sheet: 1/4" to 1.25"	Deflection Temperature 264 psi, °F	D648	534
	Tg-Glass Transition (Amorphous), °F	D048 D3418	527
GRADES/COLOURS:	Continuous Service in Air (Max), °F	Without Load	500
Forlon [®] 4301 PAI: Black	Thermal Conductivity, BTU-in/hr-ft ² -°F	Williout Load	3.7
	Thermai Conductivity, BTO-m/m-it - T		5.7
	ELECTRICAL		
	Surface Resistance, Ohm/Square	Lower Limit;	
		EOS/ESD S11.11	1E+15
	Dielectric Constant, 1 MHz	D150(2)	6
	Dissipation Factor, 1 MHz	D150(2)	0.037

Torlon® 4301 PAI is the registered trademark of BP Amoco Polymers

Torlon[®] 4501 PAI (CM)

Polyamide-imide, compression molded (bearing grade)

 CHARACTERISTICS: Stress conditions at continuous temperatures to 500°F (260°C) 	Torlon [®] 4501 PAI (CM) General Properties	ASTM or UL Test	Typical Values
 Greater compressive strength and higher impact resistance Low coefficient of linear thermal expansion and high creep resistance Amorphous material with a Tg (glass transition temperature) of 537°F (280°C) 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi	D792 D570 D638	1.45 0.3
 APPLICATIONS: Chip nests and sockets High temperature electrical connectors Labyrinth seals Bearing cages Can mandrel Seals Non-labricated bearings MATERIAL AVAILABILITY:	Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell E Hardness, Rockwell M Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-Ib/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm	D638 D638 D790 D790 D695 D695 D785 D785 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007	$\begin{array}{c} 440,000\\ 3\\ 20,000\\ 650,000\\ 16,000\\ 359,000\\ 70\\ 106\\ 90\\ 0.5\\ 0.2\\ 22,500\end{array}$
Rod: 1.125" to 15" Sheet: 0.375" to 1.5" GRADES/COLOURS: Torlon [®] 4501 PAI (CM): Black	THERMAL Coefficient of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Surface Resistance, Ohm/Square Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	E831 (TMA) D648 D3418 Without Load Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	0.2 534 527 500 3.7 1E+13 6 0.042

Torlon[®] 4501 PAI is the registered trademark of BP Amoco Polymers

Torlon[®] 4503 PAI (CM)

Polyamide-imide, compression molded (electrical grade)

 CHARACTERISTICS: Stress conditions at continuous temperatures to 500°F (260°C) 	Torlon [®] 4503 PAI (CM) General Properties	ASTM or UL Test	Typical Values
Greater compressive strength and higher impact resistance	PHYSICAL		
 Low coefficient of linear thermal 	Specific Gravity (g/cm ³)	D792	1.4
expansion and high creep resistance	Water Absorption Immersion, 24 hr., %	D570	0.35
• Torlon is an amorphous material with a Tg (glass transition temperature) of	MECHANICAL		
537°F (280°C)	Tensile Strength, psi	D638	18,000
	Tensile Modulus, psi	D638	500,000
APPLICATIONS:	Elongation, %	D638	5
• Chip nests and sockets	Flexural Strength, psi	D790	24,000
High temperature electrical	Flexural Modulus, psi	D790	600,000
connectors	Compressive Strength, psi	D695	18,000
• Labyrinth seals	Compressive Modulus, psi	D695	350,000
Bearing cages	Hardness, Rockwell E	D785	80
Can mandrel	Hardness, Rockwell M	D785	119
• Dies and patterns of formed metal	Hardness, Durometer, Shore D Scale	D2240	90
parts	Izod Impact (Notched), ft-lb/in	D256	1.5
• Thermal insulators and isolators	Coefficient of Friction, Dynamic	Dry vs. Steel, PTM55007	0.3
MATERIAL AVAILABILITY:	Limiting PV, psi-fpm	PTM55007	7,500
Rod: 2.25" to 15" Sheet: NA	THERMAL		
	Coefficient of Thermal Expansion, 10E-4/°F	E831 (TMA)	0.15
GRADES/COLOURS:	Deflection Temperature 264 psi, °F	D648	532
Torlon [®] 4503 PAI (CM): Yellow-Ochre	Tg-Glass Transition (Amorphous), °F	D3418	527
Tonon ² 4303 FAI (CM). Tenow-Ochie	Continuous Service in Air (Max), °F	Without Load	500
	Thermal Conductivity, BTU-in/hr-ft ² -°F		1.8
	ELECTRICAL		
	Dielectric Strength, Short Term, Volts/mil	D149(2)	600
	Surface Resistance, Ohm/Square	Lower Limit;	
		EOS/ESD S11.11	1E+13
	Dielectric Constant, 1 MHz	D150(2)	4.2
	Dissipation Factor, 1 MHz	D150(2)	0.031

Torlon[®] 4503 PAI is the registered trademark of BP Amoco Polymers

Torlon[®] 4540 PAI (CM)

Polyamide-imide, compression molded (bearing grade)

CHARACTERISTICS:Very low coefficient of friction and good wear properties	Torlon [®] 4540 PAI (CM) General Properties	ASTM or UL Test	Typical Values
 Under severe stress conditions at continuous temperatures to 500°F (260°C) Greater compressive strength and higher impact resistance Low coefficient of linear thermal expansion and high creep resistance Torlon is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C) APPLICATIONS: Chip nests and sockets High temperature electrical connectors Labyrinth seals Bearing cages Can mandrel Seals Bushings 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell E Hardness, Rockwell M Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm	D792 D570 D638 D638 D638 D790 D790 D695 D695 D695 D785 D785 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007	$ \begin{array}{c} 1.46\\ 0.3\\ 13,000\\ 575,000\\ 5\\ 24,000\\ 680,000\\ 17,000\\ 350,000\\ 66\\ 107\\ 90\\ 1.1\\ 0.2\\ 7,500\\ \end{array} $
• Bushings	k (wear) factor, 10- ¹⁰ in ³ -min/lb-ft-hr	PTM55007	315
MATERIAL AVAILABILITY:Rod:1.125" to 15"Sheet:0.375" to 1.5"GRADES/COLOURS:Torlon® 4540 PAI (CM)Black	THERMAL Coefficient of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F ELECTRICAL Surface Resistance, Ohm/Sq	E831 (TMA) D648 D3418 Without Load Lower Limit; EOS/ESD S11.11	0.2 534 527 500 1E+13

Torlon[®] 4540 PAI is the registered trademark of BP Amoco Polymers

Torlon[®] 5530 PAI (CM)

Polyamide-imide, 30% glass reinforced, compression molded

 CHARACTERISTICS: Torlon[®] 5530 is 30% glass reinforced Higher load structural or electronic 	Torlon [®] 5530 PAI (CM) General Properties	ASTM or UL Test	Typical Values
 applications Greatest degree of dimensional control is required Severe stress conditions at continuous temperatures to 500°F (260°C) Greater compressive strength and higher impact resistance Low coefficient of linear thermal expansion and high creep resistance Torlon is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C) APPLICATIONS: Chip nests and sockets High temperature electrical connectors Labyrinth seals Bearing cages Can mandrel 	 PHYSICAL Specific Gravity (g/cm³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell E Hardness, Rockwell M Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coefficient of Friction, Dynamic Limiting PV, psi-fpm 	D792 D570 D638 D638 D638 D638 D790 D790 D695 D695 D785 D785 D785 D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007	$ \begin{array}{c} 1.61\\ 0.3\\ 15,000\\ 900,000\\ 3\\ 20,000\\ 900,000\\ 27,000\\ 600,000\\ 85\\ 125\\ 90\\ 0.7\\ 0.2\\ 20,000\\ \end{array} $
 Seals Bushings MATERIAL AVAILABILITY: Rod: 1.625" to 15" Sheet: 0.375" to 2" GRADES/COLOURS: Torlon[®] 5530 PAI (CM) Khaki Grey 	THERMAL Coefficient of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Sq Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	E831 (TMA) D648 D3418 Without Load D149(2) EOS/ESD S11.11 D150(2) D150(2)	0.26 520 527 500 2.5 700 1E+13 6.3 0.05

Torlon® 5530 PAI is the registered trademark of BP Amoco Polymers

SUPERFIX®

Turcite[®] TA, Turcite[®] TX

CHARACTERISTICS:

- Self-lubricating
- Long-wearing bearings
- High chemical resistance
- Moisture resistant
- Always oven annealed for stress-relief
- Service temperature of 180°F (80°C)

APPLICATIONS:

- Bearings
- Rollers
- Bushings
- Valve seats
- Gears
- Liners
- Seals

MATERIAL AVAILABILITY:

Rod: 1/4" to 2" Both TA & TX

GRADES/COLOURS:

Turcite[®] TA: Blue Turcite[®] TX: Red

Turcite [®] TA, Turcite [®] TX General Properties	ASTM or UL Test	Typical Values Turcite [®] TA Turcite [®] TX		
PHYSICAL				
Specific Gravity (g/cm ³)	D792	1.49	1.46	
Water Absorption, 24 hrs (%)	D570	0.2	0.2	
MECHANICAL				
Tensile Strength @ break (psi)	D638	7,600	5,900	
Tensile Elongation at Break (%)	D638	15	19	
Flexural Strength (psi)	D790	11,000	8,000	
Flexural Modulus (psi)	D790	350,000	335,000	
Compressive Strength (psi)	D695	13,000	12,000	
Hardness, Rockwell	D785	M81	M63	
IZOD Impact Notched (ft-lb/in)	D256	0.57	0.54	
THERMAL				
Coeff. of Linear Thermal Expansion				
(x 10 ⁻⁵ in./in./°F)	D696	5.2	5.2	
Heat Deflection Temp (°F / °C) at 264 psi	D648	205 / 96	203 / 95	
Max Operating Temp (°F / °C)	-	180 / 82	180 / 82	
TRIBOLOGICAL				
Wear Factor @ 73°F (in/psi-fpm-hr)	*	43 x 10 ⁻¹⁰	30 x 10 ⁻¹⁰	
Coeff. of Friction, Dynamic (non-lubricated)	*	0.30	0.22	
Limiting PV @ 100 fpm (psi-fpm)	*	7,500	16,000	

* = Values obtained from standard Shamban Test Method (not ASTM)

Turcite[®] TA & TX is the registered trademark of Busak+Shamban, Inc.

Udel[®] Polysulfone, unfilled, extruded

 CHARACTERISTICS: Hot water & steam performance to 300°F (150°C) 	Udel [®] General Properties	ASTM or UL Test	Typical Values
 Broad temperature range capability Good thermal and electrical insulation characteristics Hydrolysis resistant 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., %	D792 D570	1.24 0.3
 Radiation stability Low ionic impurity FDA, NSF, USPVI compliant UL 94-V-O at 1/4" thickness (6.35mm) and UL 94-V-2 at 1/8" thickness (3.175mm) 	MECHANICAL Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi	D638 D638 D638 D790 D790	10,200 390,000 30 15,000 400,000
 APPLICATIONS: Manifolds Distributor values Medical equipment components Steam cleaning equipment inserts Semiconductor process equipment components 	Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Limiting PV, psi-fpm	D732 D695 D695 D785 D785 D785 D2240 D256 PTM55007	9,000 13,000 375,000 82 128 80 1.3 1,000
MATERIAL AVAILABILITY:Rod:1/4" to 6"Sheet:1/4" to 2.5"GRADES / COLOURS:Udel®:Amber Transparent & Black	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.31 340 374 300 1.8
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Square Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	425 1E+13 3.14 0.0008

Udel[®] is the registered trademark of Solvay Advanced Polymers

Ultem[®] Polyetherimide

CHARACTERISTICS:

- Excellent mechanical strength
- Outstanding heat resistance
- Exceptional resistance to environmental forces
- Inherent flame resistance with low smoke evolution
- High dielectric strength and stability
- Low dissipation factor over a wide
- range of frequencies

APPLICATIONS:

• Medical, electronic/electrical, microwave, automotive, and aircraft industries

MATERIAL AVAILABILITY:

Rod: 1/4" to 8" Sheet: 1/4" to 4"

GRADES / COLOURS:

Ultem [®] :	Amber, Black
Ultem [®] 10% Glass:	Brown
Ultem [®] 20% Glass:	
Ultem [®] 30% Glass:	Light Brown

Ultem [®] General Properties	ASTM or UL Test	Ultem®	Ultem [®] 10% Glass Reinforced	Ultem [®] 20% Glass Reinforced	Ultem [®] 30% Glass Reinforced
PHYSICAL					
Specific Gravity (g/cm ³)	D792	1.27	1.34	1.42	1.51
Water Absorption %, @24 hrs., 73°F (23C)	D570	0.25	0.21	0.19	0.16
@Equilbrium, 73°F (23C)	D570	1.25	1.20	1.10	0.90
MECHANICAL					
Tensile Strength, psi, Break, 73°F	D638	15,200	16,600	20,100	24,500
Tensile Modulus, psi, 73°F	D638	430,000	650,000	1,000,000	1,300,000
Elongation, Break, %, 73°F	D638	60	6	3	13
Elongation, Yield, %, 73°F	D638	7-8	5	NA	NA
Flexural Strength, psi, 73°F	D790	22,000	28,000	30,000	33,000
Flexural Modulus, psi, 73°F	D790	480,000	650,000	900,000	1,300,000
Izod Impact Strength, Notched, 73°F, ft-lb/in	D256	1.0	1.1	1.6	1.6
Rockwell,Hardness, "M" Scale	D785	109	114	114	114
Compressive Strength, psi	D695	21,900	22,000	28,700	30,700
Compressive Modulus, psi	D695	480,000	541,000	809,000	938,000
Shear Strength, Ultimate, psi	-	15,000	13,000	13,500	14,000
THERMAL					
Deflection Temperature, @66 psi, 1/4", °F	D648	410	410	410	414
@264 psi, 1/4", °F	_	392	405	408	410
Coeff. of Thermal Expansion, in/in-°F	D696	3.1 x 10 ⁻⁵	1.8 x 10 ⁻⁵	1.4 x 10 ⁻⁵	1.1 x 10 ⁻⁵
Melting Point, °F	_	426	_	_	_
Thermal Conductivity, BTU-in/hr-ft ² -°F	D2214	0.85	1.22	1.43	1.56
Flammability	UL94	V-0	V-0	V-0	V-0
ELECTRICAL					
Dielectric Strength, V/mil, In Oil	D149	710	700	670	630
In Air	_	830	_	_	770
Dielectric Constant, 1 kHz, 50% RH	D150	3.15	3.5	3.5	3.7
Dissipation Factor, 1 kHz, 50% RH, 73°F (23C)	D150	0.0013	0.0014	0.0015	0.0015
Volume Resistivity, 1/16", ohm-cm	D257	1.0 x 10 ¹⁷	1.0 x 10 ¹⁷	7.0 x 10 ¹⁶	3.0 x 10 ¹⁶

Ultem[®] is the registered trademark of General Electric Company

Ultem[®] 1000 PEI

Polyetherimide, unfilled, extruded

CHARACTERISTICS:High strength & heat resistance, plus excellent dielectric properties	Ultem [®] 1000 PEI General Properties	ASTM or UL Test	Typical Values
 High strength and performs in continuous use to 340°F (170°C) High dielectric strength UL 94-V-O rated with low smoke Available in glass-reinforced grades 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL	D792 D570	1.28 0.25
 FDA and USP Class VI compliant APPLICATIONS: Structural probes Manifolds Insulators Clamps Electrical & electronic insulators Reusable medical devices 	Tensile Strength, psi Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Shear Strength, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M	D638 D638 D638 D790 D790 D790 D732 D695 D695 D785	$ \begin{array}{r} 16,500\\ 500,000\\ 80\\ 20,000\\ 500,000\\ 15,000\\ 22,000\\ 480,000\\ 112\\ \end{array} $
MATERIAL AVAILABILITY: Rod: 0.125" to 6" Sheet: 1/4" to 2.5" GRADES / COLOURS: Ultem [®] 1000 PE: Amber Transparent & Black	Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in Coeff. of Friction, Dynamic Limiting PV, psi-fpm k (wear) factor, 10 ⁻¹⁰ in ³ -min/lb-ft-hr	D785 D2240 D256 Dry vs. Steel, PTM55007 PTM55007 PTM55007	125 86 0.5 0.42 1,875 2,900
	THERMAL Coeff. of Thermal Expansion, 10E-4/°F Deflection Temperature 264 psi, °F Tg-Glass Transition (Amorphous), °F Continuous Service in Air (Max), °F Thermal Conductivity, BTU-in/hr-ft ² -°F	E831 (TMA) D648 D3418 Without Load	0.31 400 419 340 0.85
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Sq Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	830 1E+13 3.15 0.0013

Ultem® 1000 PEI is the registered trademark of General Electric Company

Ultem[®] 2300 PEI

Polyetherimide, 30% glass reinforced, extruded

CHARACTERISTICS:High strength & heat resistance, plus excellent dielectric properties	Ultem [®] 2300 PEI General Properties	ASTM or UL Test	Typical Values
 High strength and performs in continuous use to 340°F (170°C) High dielectric strength UL 94-V-O rated with low smoke Available in glass-reinforced grades 	PHYSICAL Specific Gravity (g/cm ³) Water Absorption Immersion, 24 hr., % MECHANICAL Tensile Strength, psi	D792 D570 D638	1.51 0.18 17,000
 Structural probes Manifolds Insulators Clamps Electrical & electronic insulators MATERIAL AVAILABILITY: Rod: 1/2" to 6" Sheet: 3/8" to 2"	Tensile Modulus, psi Elongation, % Flexural Strength, psi Flexural Modulus, psi Compressive Strength, psi Compressive Modulus, psi Hardness, Rockwell M Hardness, Rockwell R Hardness, Durometer, Shore D Scale Izod Impact (Notched), ft-lb/in	D638 D638 D790 D790 D695 D695 D785 D785 D785 D2240 D256	800,000 3 30,000 900,000 32,000 625,000 114 127 86 1
GRADES / COLOURS: Ultem [®] 2300 PEI: Brown	Limiting PV, psi-fpm THERMAL Coeff. of Thermal Expansion, 10E-4/°FDeflection Temperature 264 psi, °FTg-Glass Transition (Amorphous), °FContinuous Service in Air (Max), °FThermal Conductivity, BTU-in/hr-ft²-°F	D230 PTM55007 E831 (TMA) D648 D3418 Without Load	0.11 410 419 340 1.56
	ELECTRICAL Dielectric Strength, Short Term, Volts/mil Surface Resistance, Ohm/Sq Dielectric Constant, 1 MHz Dissipation Factor, 1 MHz	D149(2) Lower Limit; EOS/ESD S11.11 D150(2) D150(2)	770 1E+13 3.7 0.0015

Ultem[®] 2300 PEI is the registered trademark of General Electric Company

Vespel[®] Polyimide

CHARACTERISTICS:

- Cryogenic temperatures to 550°F (288°C)
- Very good wearing properties
- Electrically insulating
- Extreme heat resistance
- High long-term strength as well as an excellent resistance to shocks
- Low gas exbalation
- Excellent resistance to radiation
- Easy machining without special equipment or methods

APPLICATIONS:

- Rotary seal rings
- Thrust washers and discs
- Bushings
- Flanged bearings
- Plungers
- Spline couplings
- Valve seats
- Thermal and electrical insulators
- Wafer clamping, polishing and
- grinding ringsWafer guides & carriers
- Vacuum pads

MATERIAL AVAILABILITY:

Rod: 1/4" to 3.25" Sheet: 1/16" to 2"

GRADES / COLOURS:

SP-1:	Brown
SP-21:	Grey
SP-22:	Black
SP-211:	Dark Brown
SP-3:	Brown

Vespel [®] Polyimide General Properties	ASTM or UL Test	SP-1 Unfilled	SP-21 15% Graphite	SP-22 40% Graphite	SP-211 10% PTFE, 15% Graphite	SP-3 15% Moly
PHYSICAL						
Specific Gravity (g/cm ³)	D792	1.43	1.51	1.65	1.55	1.60
Water Absorption, 24 hrs @ 73°F (%)	D570	0.24	0.19	0.14	0.21	0.23
48 hrs @ 122°F (%)		0.72	0.57	0.42	0.49	0.65
MECHANICAL						
Tensile Strength, Ultimate @ 73°F (psi)	D638	12,500	9,500	7,500	6,500	8,200
@ 500°F (psi)		6,000	5,500	3,400	3,500	_
Tensile Modulus (psi)	D638	_	_	_	_	_
Tensile Elongation, Ultimate @ 73°F (%)	D638	7.5	4.5	3.0	3.5	4.0
@ 500°F (%)		6.0	6.0	2.0	3.0	_
Flexural Strength, Ultimate @ 73°F (psi)	D790	16,000	16,000	13,000	10,000	11,000
@ 500°F (psi)		9,000	9,000	6,500	5,000	5,500
Flexural Modulus @ 73°F (psi)	D790	450,000	550,000	700,000	450,000	475,000
@ 500°F (psi)		250,000	370,000	400,000	200,000	270,000
Compressive Strength, 10% strain @ 73°F (psi)	D695	19,300	19,300	16,300	14,800	18,500
Compressive Modulus (psi)	D695	350,000	420,000	475,000	300,000	350,000
Hardness, Rockwell	D785	E45-60	E25–45	E5–25	E1-20	E40–55
IZOD Notched Impact (ft-lb/in)	D256	0.8	0.8	_	-	0.4
Poisson's Ratio		0.4	0.4	-	-	-
THERMAL						
Coeff. of Linear Thermal Expansion						
(x 10 ⁻⁵ in./in./°F)	D696	3.0	2.7	2.1	3.0	2.9
Heat Deflection Temp (°F / °C) at 264 psi	D648	680 / 360	680 / 360	_	_	_
Max Continuous Operating Temp (°F / °C)	_	500 / 260	500 / 260	500 / 260	500 / 260	500 / 260
Thermal Conductivity (BTU-in/ft ² -hr-°F)	C177	2.0	6.0	12.0	5.3	3.2
$(x \ 10^{-4} \ cal/cm-sec-^{\circ}C)$		6.9	20.7	41.3	18.3	11.0
Flammability Rating	UL94	V-0	V-0	V-0	V-0	V-0
ELECTRICAL						
Dielectric Strength (V/mil) short time, 1/8" thick	D149	560	250	_	-	_
Dielectric Constant at 1 MHz	D150	3.55	13.2	_	-	_
Dissipation Factor at 1 MHz	D150	0.0034	0.0106	_	-	-
Volume Resistivity (ohm-cm)at 50% RH	D257	$10^{14} - 10^{15}$	$10^{12} - 10^{13}$	-	-	-

Vespel[®] is the registered trademark of Dupont

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Vintec[®] I PVC

CHARACTERISTICS:Exceptional corrosion resistanceVintec I conforms to ASTM	Vintec [®] I PVC General Properties	ASTM or UL Test	Typical Values
 D1784-95 Class 12454-B Resistant to most acids and alkali solutions Vintec I is self extinguishing Fire ratings gs (UL-94V-0) and has a flame spread under 20 per ASTME-84 	PHYSICAL Specific Gravity g/cm ³ Water Absorption % Rockwell Hardness R Scale Shore Durometer D Cell Class	D792 D570 D785 D2240 D1784	1.42 0.06 115 89 12454-B
 APPLICATIONS: Valve boxes Air handling and ventilation Tanks & linings Pump components Housings, equipment in a clean room Plating barrels 	MECHANICAL Tensile Modulus psi Yield Strength psi Flexural Modulus psi Yield Strength psi Izod Impact ft-lb/in THERMAL	D638 D638 D790 D790 D256	411,000 7,500 481,000 12,800 1.0
MATERIAL AVAILABILITY: Sheet: 1/16" to 4" GRADES / COLOURS: Vintec [®] I PVC: Dark Grey, White, Dark	Vicat Softening Point °C/°F Heat Deflection Temperature °C/°F Heat Deflection Temperature °C/°F Linear Coefficient of Expansion in/in/°C Linear Coefficient of Expansion in/in/°F	D1525 D648 D648 D696 D696	83/181 82/179 80/176 5.8 x 10 ⁻⁵ 3.2 x 10 ⁻⁵
Blue, Clear	FLAMMABILITY RATING Flammability Flammability Flame Spread CHEMICAL	D635 UL 94V E84	Self-Extinguishing 0 15
	CHEVITCAL Chemical Resistance ELECTRICAL Electrical Volume Resistivity Ohm/cm Dielectric Constant 60 Hz Dissipation Factor 60 Hz Loss Index 60 Hz Dielectric Strength Volts/mil	D1784 D257 D150 D150 D150 D150 D149	Class B 5.4 x 10 ¹⁵ 3.19 0.0096 0.030 544

Vintec[®] I PVC is a registered trademark of Compression Polymers Corp.

Vintec[®] II PVC

CHARACTERISTICS:Vintec II is a high impactVintec II conforms to ASTM-	Vintec [®] II PVC General Properties	ASTM or UL Test	Typical Values
 D-1784-95 Class 16444-D Operation at temperatures up to 140° F Fire ratings UL-94V-0 and flame spread under 20 per ASTM-E-84 Vintec II has good chemical resistance to acids, alkalis and fumes. Excellent thermoforming and vacuum forming characteristics. Vintec II is self extinguishing 	PHYSICAL Specific Gravity g/cm ³ Water Absorption % Rockwell Hardness R Scale Shore Durometer D Cell Class MECHANICAL Tensile Modulus psi Yield Strength psi	D792 D570 D785 D224 D1784 D638 D638	1.35 0.16 106 85 16444-D 396,000 7,400
 APPLICATIONS: Valve boxes Air handling and ventilation Tanks & linings Pump components Housings, equipment in a clean room Plating barrels MATERIAL AVAILABILITY: Sheet: 1/8" to 1"	Flexural Modulus psi Yield Strength psi Izod Impact ft-lb/in THERMAL Vicat Softening Point °C/°F Heat Deflection Temperature °C/°F Heat Deflection Temperature °C/°F Linear Coefficient of Expansion in/in/°C Linear Coefficient of Expansion in/in/°F	D790 D790 D256 D1525 D648 D648 D696 D696	400,000 10,000 18 83/181 82/179 80/176 6.3 x 10 ⁻⁵ 3.5 x 10 ⁻⁵
GRADES / COLOURS: Vintec [®] II PVC: Light Grey, Dark Grey, White	FLAMMABILITY RATING Flammability Flammability Flame Spread CHEMICAL Chemical Resistance ELECTRICAL Electrical Volume Resistivity Ohm/cm Dielectric Constant 60 Hz Dissipation Factor 60 Hz	D635 UL 94V D84 D1784 D257 D150 D150	Self-Extinguishing 0 15 Class D 6.0 x 10 ¹⁵ 3.03 0.0083
	Loss Index 60 Hz Dielectric Strength Volts/mil	D150 D149	0.025 645

Vintec[®] II PVC is a registered trademark of Compression Polymers Corp.

A LEADER IN CUSTOMER SERVICE

rocessing of lastics achining guidelin	es	Teas	Techo	ALL AND ALL AN	ALL AND ALL AN	The second of the second of the second secon	The state of	The man	The state of the s	Trender Ade	The same rate	Prove a se	/	and	and the second	the state of the s	No. Incore	The state of the s
Sawing	α	20 30	20 30	20 30	15 30	15 30	15 30	15	15 30	20 30	15 30	15	15 30	15 30	5	5	5 10	15 30
rit	γ	2	2	0 5	5.8	5.8	5 .8	5	0	5 .8	0	0	0	0	0	0	0	10
1	v	500	500	500 800	300	300	300	300	300	300	500	500	500 800	500 800	800 900	800 900	800 900	200 300
Clearance angle (*) Rake angle (*) Cutting speed m/min Pitch mm	t	3.8	3	2	3.8	3 .8	3.8	3 .	2	2	2 5	2	3	3	10 14	10 14	10 14	3.5
Drilling V17	α	5 15	5 15	5 10	5 10	8 10	8 10	8 10	8 12	10 16	3 10	3 10	5 10	5 10	5 10	5 10	5 10	6
\$	γ	10 20	10 20	15 30	10 20	10 20	10 20	10 20	10 30	5 20	10 20	10 20	10 30	10 30	5 10	5 10	5 10	5 10
· III.	φ	90	90	90	90	90	90	90	90	130	90	90	90	90	120	120	90 120	120
Cearance angle (*) Rake angle (*) Point angle (*) Cutting speed milmin	V	50 150	50 150	50 200	50 100	50 100	50 100	50 100	50 200	150 200	20 80	20 	50 200	50 200	80 100	80 100	80 100	80 100
Feed mm/lev The twist angle β of the dell bit should be approx. 12° to 10°	s	0,1 0,3	0,1 0,3	0,1 0,3	0,2 0,3	0,2 0,3	0,2 0,3	0,2 0,3	0,2 0,3	0,1 0,3	0,1 0,3	0,1 0,3	0,1 0,3	0,1 0,3	0,02 0,1	0,02 0,1	0,05 0,15	
Milling	α	10 20	10 20	5 15	5 15	10 20	10 20	10 20	5 10	5 15	2 10	2 10	5 15	5 15	2	2 :5	2 5	15 30
Cearance angle (1) Rake angle (1) Side angle (1)	γ	5 15	5 15	5 15	5 15	5 15	5 15	5 15	0 10	5 15	1	1	6 10	6 10	0.5	0.5	0 5	6 10
Cutting speed milmin The feed can be up to 0.5 mm / tooth	V	250 500	250 500	250 500	300	300	300	300	300 500	250 500	250 500	250 500	250 500	250 500	90 100	90 100	90 100	80 100
Turning	α	6 10	6 10	6 .8	5 10	5 10	5 10	5 10	5 15	10	6	6	6 .8	6 .8	2 :5	2 :5	2	6.8
	γ	0 5	0	0 5	0 5	6 .8	6 8	6 8	25 30	5 8	0	0	0	0 5	0 :5	0.5	0 :5	2 :8
Clearance angle	χ	45 60	45 60	45 60	45 60	45 60	45 60	45 60	15	10	45 60	45 60	45 60	45 60	7	7 10	7 10	45 60
Side angle (*) Cutting speed m/min Feed mm/rev	V	250 500	250 500	300 600	300 400	300	300	300	200 500	150 500		350 400	250 500	250 500	100 120	100 120	100 120	150 200
e nose radius r must be at least 0.5 mm	s	0,1 05	0,1 05	0,1 0,4	0,2 0,4	0,1	0,1 0,5	0,1 0,5	0,2 0,5	0,1 0,3	0,1	0,1 0,3	0,1 0,5	0,1 0,5			0,05	
Special measures	from	60 mm 80 mm 100 mm	damete damete	r TEC/	MID 66	GF, TE	CADUR	PET/PB	from from from	60 mm 80 mm 100 m/	diamet diamet m diame	or TEC	APEEK AMID 6	6 MH, I		ECADU	F/PVX R PET/P TECAN	
			it mater 120 °C	al to					suscept stress o	sible to	owner				Use car	bide tip	ped tool	

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576

General information*

Non-reinforced thermoplastic polymers can be machined using high speed tools. For reinforced materials, carbide tipped tools are necessary.

In all cases, only correctly sharpened tools should be used.

Due to the poor thermal conductivity of plastics, good heat flow must be ensured. The best form of cooling is heat dissipation via the chips.

Dimensional stability

Dimensionally accurate parts presuppose the use of stress relieved semi-finished products. Heat from machining will otherwise unavoidably result in the release of machining stresses and distortion of the part. If large material volumes are to be machined, intermediate tempering may be necessary after rough machining to relieve the resulting thermal stresses. Specific temperatures and times to be used according to material can be obtained from us upon request.

Materials with high moisture absorption (e.g. polyamides) may have to be conditioned before processing.

Plastics require higher production tolerances than metals. Furthermore, the very much higher thermal expansion needs to be taken into consideration.

] Machining methods

1. Turning

1 Secondary cutter

Cutting off flexible pla

Parting off flexible pla-

stics

stics

Lathe too

Guide values for tool geometry are given in the table. For surfaces with particularly high quality requirements, the cutting edge must be designed as a broad smoothing tool as shown in Figure 1.

For cutting off, the lathe tool should be ground as shown in Figure 4 to prevent the formation of burrs.

For thin walled and particularly flexible workpieces, on the other hand, it is better to work with tools that are ground to a knife-like cutting geometry (Figures 2 and 3).

Figure 1

Figure 2

Figure 3

2. Milling

For plane surfaces, end milling is more economical than perpheral milling. For circumferential and profile milling the tools should not have more than two cutting edges so that vibrations caused by the cutters can be kept low and the gaps between the chips is sufficiently large.

Optimum cutting performance and surface finish are obtained with single-cutter tools.

3. Drilling

Iwist drills can generally be used; these should have an angle of twist of 12° to 16° and very smooth spiral grooves for good removal of cuttings.

Larger diameters should be pre-drilled or should be produced using hollow drills or by cutting out. Particular attention should be paid to using properly sharpened drills when drilling into solid material, as otherwise the resulting compression stresses can increase to the extent that the material splits

Reinforced plastics have higher residual processing stresses and a lower impact resistance than non-reinforced plastics and are therefore particularly susceptible to cracking. Where possible, they should be heated to around 120 °C before drilling (heating time approx. 1 hour per 10 mm cross-section). This method is also recommended for polyamide 66 and polyester.

4. Sawing

Unnecessary neat generation caused by friction must be avoided, as generally thick-walled parts are cut with relatively thin tools during sawing. Well-sharpened and strongly offset saw blades are therefore recommended.

5. Thread cutting

Threads are best out using thread chasers; burring can be avoided by using twin-toothed chasers.

Die cutters are not recommended as re-cutting can be expected during removal of the cutter.

A machining allowance (dependent on material and diameter; guide value: 0.1 mm) must frequently be taken into account when using tap drills.

6. Safety precautions

Failure to observe the machining guidelines can result in localised overheating which can lead to material degradation. Decomposition products which may be released, e.g. from PTFE fillers, should be removed using extraction facilities. In this respect, tobacco products should be kept out of the production area due to the risk of poisoning.

*Our application engineering advice, provided both written and orally, is intended to help you in your work. It must be regarded as a recommendation writhout obligation, also with respect to possible third-party property rights. We can assume no liability for any possible damage which anses during processing.

Superfix (Singapore) Pte Ltd 126 Genting Lane, Singapore 349576 Tel: (65) 6748 2122 Fax: (65) 6747 9838 Email: sales@superfix.com.sg Website: www.superfix.com.sg

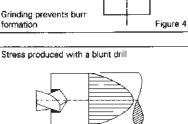
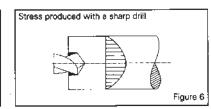
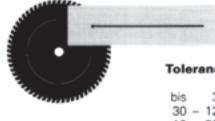



Figure 5

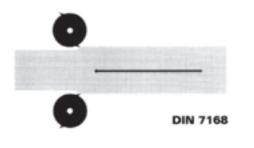

143

Flexible and versatile – the finished solution for your application.

Semi-finished products can be further processed to meet individual requirements. We have available all the necessary manufacturing techniques within our production facilities.

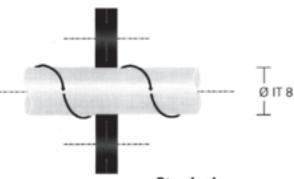
Sawing:

Small blocks and billets are cut at right-angles and exactly to size by numerically controlled machines.



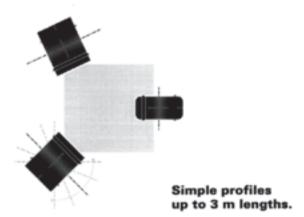
Tolerances: Width

bis 30 mm + 0,5 mm 30 - 120 mm + 1,0 mm 10 - 500 mm + 3,0 mm


| Planing:

Parallel planing is performed on 2 sides. Angular planing is performed on 4 sides. Very close tolerances and optimum surface finishes are possible even with fibre-reinforced plastics.

Grinding:


Rods, heavy and thin wall tubes are ground to give an excellent surface finish characterised by close tolerances. In special cases rods may be ground to IT 7 tolerance. They have very good concentricity properties.

Standard Ø 1,8 – Ø65 mm h9 from 65 mm ± 0,2mm

| Profiling:

Even small quantities of a semi-finished product can be further processed at short notice by profile planing. The finished products have simple geometries and good dimensional and positional tolerances.

Superfix (Singapore) Pte Ltd126 Genting Lane, Singapore 349576Tel: (65) 6748 2122Fax: (65) 6747 9838Email: sales@superfix.com.sgWebsite: www.superfix.com.sg

Chemical Resistance

Factors like temperature, concentration of the driving forces, duration and mechanical load are important criterions for the examination of chemical resistance.

In the following table, you can see the materials resistance to different chemicals. These details correspond to the present state of our knowledge and are meant to provide information about our products and their applications. They do not mean that the chemical resistance of products or their suitability for a particular purpose is guaranteed in a legally binding way. Any existing commercial proprietary

rights are to be taken into account. We guarantee perfect quality within the scope of our general terms and conditions.

For specific applications it is recommended to establish suitability first. Standard testing is performed in normal climatic conditions 23/50 according to DIN 50 014.

REAL STATE	CONTRACT IN 197	CURP (PO	Contra and	18	CASH E PRO	CARD & MUCH	<u>l</u> E	18	8	18	(Gr			100	CONNE ON BO	6	18	18	18	18	Chan do la land	6		15.840 14.81		
89 199		8	3	34/3	AE B	20	20			2	20	63	5		3	098900		15	R R	8	3	1	R	3		
3	19	8/8	18	13	6/6	3/3	8/3	£/8	3/3	8/9	3	9/3	8/8	\$/?	å/(]8	13	8/3	1/2	8/	8/3	3/3	3/3	18		
	$\left(\right)$	5	$\left(\right)$	$\left(\right)$	$\left(\right)$	Γ.	[$\left(\right)$	CORRECTOR CALLER	(F)	3	CANNO P (BY C BCLL)	16	1.5	CONNE (94 9 11. 11	5)	$\left(\right)$	3	CORON NH IN (PET. TO	10	CARDER OF INCOMPANY	1	$\langle \rangle$	6	$\langle \cdot \rangle$)
Acetamide 50%	\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow		\rightarrow	\rightarrow	•				•	•	•	\rightarrow	\rightarrow	Ì	2	\neg	+		Ì		t
Acetone	+	+	+	+						+		(+)		(+)	{+}	(+)	(+)		(+)		+	.+		(+)		I
Formic acid, aqueous solution 10%	(+)	+		+		+			_											+	+		+	+		l
Ammonia solution 10%			+	+			(+)		(+)								+		+	+	+	(+)		*		I
Anone			-		-				-			(+)		+								+	+	(+)		ĩ
Benzine			+								_			+			+			+			(+)	(+)	{+}	1
Benzene			-	-	_	(+)	+	(+)					+							(+)	+	+	(+)	(+)		1
Bitumen	-	+					_		_		_		_	(+)	(+)	(+)	-			_		+	(+)	(+)		î
Boric acid, aqueous solution 10%	(+)						+															+			+	l
Butyl acetate	147						(+)		(+)			+		+	+		_						(+)	(+)		Î
Calcium chloride, solution 10%	(+)					+	+				+										+	(+)				Í
	1.41	-	-		+	(+)			-					+			-				+					i
Chlorbenzene	(+)	•	-	-		(+)							(+)		(+)		-			-			(+)	-		İ
Chloroform	1.+1			-		1.41	-	-	-				144	14	+		-	-	-			(+)			-	1
Clophene A60, 50%		-	_	-	-					+	-								-			+				ġ
Cyclohexane	٠	•	_	-	-	_				-		(+)		-				_	(+)	-		+				l
Cyclohexanone		+	_	-	-		1	-	-	+	-	147	-	*	-	+		(+)	(+)	-		+				ł
Decalin		+								+		-		*	•	-	-	(+)	(+)			+	(+)		1	i
Diesel oil		+	_	-	+	•				*	-		-	+	+	+	+				_	-				ł
Dimethyl formamide		(+)	_		-	*				+	٠	-		+	•	(+)		-	+	_	+	-	+	•	-	
Diocthyl phthalate				_	_	(+)				+	_	_		+	•	+		(+)		1.2	*	*	•	*		
Dioxane		+	_	_			(+)		_	+			_						1.3		(+)		+	(+)		
Acetic acid, concentrated	_	(+)	_		_	•		_	•	+	(+)	_		-		-	•		(+)		(+)	-	+	•		ł
Acetic acid, aqueous solution 10%	(+)	+		+			+	+	+	+	_	•				(+)	-	•	+	(+)	+	(+)	+	+	+	ł
Acetic acid, aqueous solution 5%		+		+		•	•	•	•	•				+	+	(+)	+		+	+	+	(+)	•	•	+	l
Ethanol 96%		+	+	٠	+		+	+	+	+	+	+		+	+	•	•	(+)	٠	+		•	+	+	+	l
Ethyl acetate	+	+			+		-			+	+	+		+	+	•	+	•	(+)	(+)	(+)	•	+	•		
Ethyl ether		+					+	+	+	+	+	+		+	•	•	+			+	•		+	+		
Ethylene chloride	(+)	+			٠					٠	+			+	+	(+)	+					-	•	(+)	•	ļ
Hydrofluoric acid, 40%									(+)	+	+		+					(+)		•	-	-	+	+	(+)	l
Formaldehyde, aqueous solution 30%			+	+	+	+	+			+		+	(+)	+	+	(+)	+		+			-	٠	•		l
Formamide										٠				+	٠	(+)						(+)		{+}		
Freon, Frigen, liquid		+		. *					+	+	+	_		+	+	+	+			+			-	{+}	(+)	l
Fruit juices	(+)				+					+							+		+	+	+		+	+	+	
Glykol	+	+	+	+			+				+	+	+	+	+	+		+	+	+	+	+	+	•	•	
Glysantin, aqueous solution 40%		+	+	+		+	+			+	+	+			+	+		+		+	+	+	+	+		
Glycerine	+	+			+				+	+				+	+	+	+	(+)			+					
Urea, aqueous solution	Г									+					.+	+					+	+	+	+	+	
Heating oil		+								+		+		+	+	+	+	(+)		+	+	+	(+)		+	
Heptane, Hexane			+	+	+		+		+	+			+	+		+		+		+	+	+	+		+	
Iso-octane	—	+						+	+	+				+	+	+										
Isopropanol		+		-	_			+	{+}							(+)		(+)	+	+	+		+	+	(+)	ĺ
lodine solution, alcohol solution	t	+		1	1							_		•				(+)	+			(+)		+	(+)	ļ
Potassium lye, aqueous 50% "	\vdash				t-			Ē			-								+				+	+	+	ĺ
Potassium lye, aqueous 10%	t	(+)			1	14						(+)		+	+	+	+		+				4	+	+	ĺ
Potassium dichromate, aqueous solution 10%	\vdash		1	1	1	1		1	-			18				(+)			+	+		(+)	+	+	+	ĺ
Potassium permaganate, aqueous solution 1%	\vdash	+					t-	\vdash	-		1				1				+			(+)		+	{+}	i
Cupric sulphate 10%	+			-	1			<u> </u>	-	And in case of		1000	_	-	-	_	-	-			1.	-	-	+		è

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

Southern the	TROAT HILE	Charles (Bles	Techon (and)	Cherry (Br)	TRODE INC	TECHER P (P)	CAN S (P)	CORD ON PALL	HECKEY ON ETTER BUILES	Char Old bull	Chan by bC	HCOMP & BAN BCIT	Chan 10. 60	00011.1	18CM24 181 0 1 11.	0411 190	CHOW PART	Techan tech to	Charles han	Charles Mary	Theory of the start	TROAD PE DA	CALL HANS	15891 (Add 1100	1	
s)		3		(S)		5/6	C (BALLAR)	C INTERNO	C BANDA	Racit		01.40.	01	8 5	ĺ	(mag)	81 (MC). 1	(POMAL)	(POM-M)	3/1		185	1	1
Linseed oil	1	+										+					+				+	+	+	+	+	Ì
Methanol		+				+	+	{+}	+	+		+	+	+		(+)	+			+	+	+	+	+	(+)	T
Methyl ethyl ketone		+	+	+	+	+		{+}		+	+	(+)	(+)	+	+	+	+		(+)	+	(+)	+	+	+	-	Γ
Methylene chloride						{+}				+	+	+	(+)	(+)	(+)					-	(+)	(+)	-	(+)	-	Γ
Milk		+					+			+		+		+	+	+	+	+	+		+	+	+	+	+	
Lactic acid, aqueous solution 90%		+			+	+	{+}			+		+				(+)		+			+		+	+	-	Ι
Lactic acid, aqueous solution 10%		+	+	+	+	+	+			+		+		+		+		+			+	(+)		+	+	J
Sodium bisulphite, aqueous solution 10%		+	+	+	+	+				+		+	+	+	+	+		+	+	+		-	+	+	+	I
Sodium carbonate, aqueous solution 10%		{+}	+	+	+	+				+		+		+	+	+	+	+	+	+	+	(+)	+	+	+	I
Sodium chloride, aqueous solution 10%		+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+		+			J
Sodium nitrate, aqueous solution 10%		+				+				+		+		+	+	+	+		+	+	+	+	+	+	+	L
Sodium thiosulphate 10%		+				+				+		+		+	+	+				+	٠	+	+	+	٠	L
Soda lye, aqueous 50%	L		+	+		+	+			+	+	+	+	+	+	+		•	+		+		+	+		ų
Soda lye, aqueous 5%	1	(+)			_	٠	+		٠	+	٠	٠	+	٠	٠	٠	٠	•	٠		+		+	+		J
Nitrobenzene	L	+		_		{+}	-			+			+	(+)	(+)	(+)			+		(+)	(+)	+	•		Ļ
Dxalic acid, aqueous solution 10%	(+)		+	+			+		+	+		+	+	(+)	(+)	+		+	+		-	(+)	٠	+	+	Ļ
Ozone *	-	(+)		-	-					+		+	+	-		•					-	-		(+)		ļ
Paraffin oil	1	+		-	+		+			+		+	+	+	+	+	+	+		+	+	•	٠	•		÷
Perchlorethylene	Ļ	•	-	_	-	(+)				+		+	_	{+}			_	(+)		(+)	+	+	•	•	(+)	-
Petroleum	1	•	-	-	-	+	_	_		+		+	_	٠	٠	٠	+		_	٠		•	•	•	(+)	÷
Phenol, aqueous solution		+	_	_	-	{+}	_	_	_	+		+	+		•	•	_		٠	-	•	•	•	•	(+)	4
hosphoric acid, concentrated	-	(+)	•	•	_	٠		_		+	٠		•	•	-	-	-			+					+	4
Phosphoric acid, aqueous solution 10%		(+)	+	+	+			_	_	+		_	+			•	•	+	٠		(+)				•	4
Propanol	-	٠	L	-	-		_	_	_	+	_	•	_	+	+	•	+	٠			+	+	+	+		4
Pyridine			-	-		(+)		_	_	+	+	+	٠	+	+	_	_	-	(+)	_	+	(+)	(+)	(+)	-	4
Pyridine 3 solution, aqueous solution	ـ_	-	-	-	-	-	_		_	_	+	_	_		+	+	+		•			+	-		_	ł
Salicylc acid			_	_	_	_	_	_	_	+	_	+	+			٠	_	_			_	(+)			+	4
Nitric acid, aqueous solution 2%	-	+	+	+		+	*	+	+	+	+	+	+	•		•	-	•	+			-	•	•	•	4
hydrochloric acid, aqueous solution 36%			+	+	+	(+)	+		{+}	_	+	+	+	•		*		+	+	*			•	•	*	ł
Aydrochloric acid, aqueous solution 2%	-				Ļ	{+}	+	+		+	+	•		-	1	{+}	_			*	-		+	*		Ŧ
Sulphur dioxide	-		-	-	-	-	(+)	_	-	+	+	+		٠	٠	+	_	-		٠		•	•	(+)	-	ł
Sulphuric acid, concentrated 98%		-								•	+	(+)	•	•	•	•	-	-	•	-	-	-	•	(+)	-	ł
Sulphuric acid, aqueous solution 2%	-		+	+			+	+		+	+		+	•		-	_	+	٠	-	•	-	•	•		4
Hydrogen sulphide, saturated	-	1.3			-	-	+			+			+	+	+	(+)		+					+	+	-	4
Soap solution, aqueous solution Silicone oils		(+)	-	-	-	-	+	_	+	+	-		-	*	+	•	+	+	•	•	*	-	+	*		đ
Soda solution, aqueous solution 10%	-	+ (+)	-	-	-		+	_		+		+		+	+	+	+	+		+		*	*	*	*	ł
Edible fats, Edible oils	-		-	-				-		•		+	٠	*	*	+		*		+		+	+	*	+	4
Styrene	1	+	-	-	+		+	_		+		+	-	+	*	+	+			-	-	*	*		\vdash	ł
Tar	•	+	-	-				_	-	+	-	-	-	+	+	+	-	-		-		+		2+2	-	ł
Carbon tetrachloride	1	+	-	-			+		(+)	*				(+)		-						* (+)				ł
Tetrahydrofurane		+		-					143	+	+	+		+	+		+	-	-		+ (+)	-	(+)	(+)	-	ł
Tetralin	P.	+	-	-			-			*	٠		٠	•	•	•	_		-		(+)		-	(+)	-	ł
nk	-	•		-	-					+		+		+	•	+	+			•	-					ł
Toluene	-	•				(+)		(+)		•		•	(+)	•	•	+	+		-	+ (+)	+			(+)		f
Transformer oil	+	•	-	-	-	+		+		•	-	•	741	•	•	+	•	-	(+)				(+)			ł
Triethanolamine	-	1		-	-	+ (+)				+				+	+	+		-	1.12		+		+	+	+	ł
Trichlorethylene	-			+	-	(+)				+		+		+	(+)	(+)					-	-	(+)		1	ħ
Trilon B, aqueous solution 10%	-	+	-	-	-	147	-	-	-	+		-	-	+	+	+	-					-	144		-	Ť
Vaseline	+		-	-			+			+		+				+					+			(+)	+	đ
Wax, molten	-	+		+	+		+			+	+	+		+	+	+	+	+					(+)	(+)	-	1
Water, cold	\vdash				+		+			+	+	+	+	+	+	+	+	+		+						f
Water, warm	\vdash	1			1		-	(+)	-			•	-	_	(+)	_	(+)	(+)			(+)			+	+	f
hydrogen peroxide, aqueous solution 30%	1		(+)	_	-	(+)	+	1.13	(+)	+	+	+	+				-	+			-					1
lydrogen peroxide, aqueous solution 0,5%	\vdash		144	144	-	+	•		+	•		•	+					+		+		(+)	+	+	+	þ
Wine, Brandy	\vdash	+		-	-		+			+	-	+					+	+								f
Tartaric acid	+	•			-		•			•		+		+	+	+			-		+ (+)	(+)	+		+	l
		•		•	-		+ (+)		1.1	•		+	{+}	+	•	+ (+)				(+)	+	+				f
Cylene		1000	1.1			100	141			-		-	1.43		-		_	-	-	1.4.5	-				-	f
Kylene Enk chloride, aqueous solution 10%	m		+	+		+	+	+		+	+	+	+	643	(+)	1.4.4										18

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

		Ny	олз	зť,									6
Chemical	Concentration Weight, %	Nylon 101, Nylatnor ^a GS	MC* 901, MC* 907, Nyiatron* GSM, GSM Blue, Nyiatron* NSM	Acetron ^e GP Acetal, Deirin ^e	Ertatyte* PET-P Ertatyte* TX	PC 1000 Polycarbonate	PSU 1000 Polysulfane	Ultem [*] 1000 PEI	Fluorosint* PTFE	Techtron* PPS	Ketron*, PEEK	Todon" PAI	Celazoie" Polybenzímidazole
Acetaldehyde Aq.	40	В	В	A	A	D	-	D	A	A	A	А	•
Acetamide Aq.	50	A	Ā	A		1	•		A	• •	A	· .	
Acetic Acld Ag.	10	С	C	C	в	в	A	A	A	A	А	A	В
Acetone	1	А	A	A	В	D		С	A	A	А	Α	A
Acrylonitrile	1	A	Λ		В	D	D		A	A.	A	A	A
Alcohols, Aliphatic		B	В	Α	A	A	A	<u>A</u>	A	<u>A</u>	A	A	<u> </u>
Allyl Chloride		c		•	•	•	L .	+	<u>A</u>	-	A	•	
Ailyi Alcohol			B	····· .	A	B			A	A	A	A	
Aluminum Chloride Aq. Aluminum Sulfate Ag.	10	A	A		A	A	A	•	A	A	- <u>A</u>	A	I
Ammonia Aq.	10	A	A	A	A	A .	A .	+	A	A	A	- <u>-</u>	- c
Ammonia Gas	10	- Ĉ	B	0	- A		В	•	A	- î	A	C	č
Ammonium Carbonate Ag.	10	A	A	·· - ·	Ā	B	•	•	Ā	A	Â	Ă	- ·
Ammonium Chloride Ag.	10	D	B	A	A	Ā	A	*	A	A	A	A	
	37	D	B	A	A	A	•	*	A	A	A	A	
Amyl Acetate		В	D	A	•	D	† D -	В	A	A	A	A	^
Amyl Alcohol		ż	A	•	*	В	A	۰ •	A	A	A	A	•
Anifine		Ċ.	C	В_	A	<u> </u>	•	•	Α	A	A	A	•
Antimony Trichloride Aq.	10	D	D		,	A	D	*	A		A	•	· ·
Barium Chloride Aq	10	D	В	A	*	A	A	•	A .	A	A	A	
Banum Sulfate Ag.	10		A	. <u>A</u>			·	-	<u>A</u>		A	A	
Barium Sulfide Ag.	10	<u>A</u>		•			+:-	D	A	B	A	A	
Benzaldehyde Benzene		A	C A	A	A A	 D	D		A	A	A	A	
Benzenesulfonic Acid		<u>A</u> D	∔ - î -	A C	A T	D	- ¹	•	A	A	D	D	
Benzyl Alcohol		C C	D	A	A	D	÷		Â	A	A	A	ŀ , ─
Benzoic Acid Ag.	SAT	č	D		A	D	•	-	A	A	A	•	•
Beverages Aq. Alcoholic		B	B	A	A	Ă	Γ_Α	A	A	A	A	A	A
Beverages Aq. Carbonated		B	B	A	A	A	A	A	A	A	A	A	A
Bitumen		В	В	Α	Ŧ	*	•	-	A	•	A	•	·
Bleaching Lye	10	С	В	C	-	•		•	A	•	<u>A</u>	A	•
	100	<u>с</u>	В	C		*	· ·	•	A	· ·	A	•	
Boric Acid Aq.	10	D		•	A	A	,	L · _	A	<u>A</u>	A	· ·	
Boron Triffuoride		D	D		*	-		•	· ·	Į			
Bromine Aq.	30	D	<u>D</u>	D	*	<u>D</u>	A	-		A	B	<u>A</u>	
Bromine Liq.		D	D	Ď		A	8			A	<u>D</u>	A	A
Butanol Butyl Acetate		B A	8	A	e A	D	D	A B	A	A	Ă.	A	
Bulyi Acetale Bulyi Phthalate		D		- A			•	•		8	A	Â	
Butylene Glycol		A	В		B	В	· · ·	A	A	Ā	A	1	A
Butylamine		A		- <u>D</u>	1	D	•	D	A	B	A	A	•
Butyric Acid Aq.	20	D	В	A	•	D		*	A		A		•
Butyric Acid	CONC	D	В	•	•	D	+	•	A	A	A	*	*
Butyrolactone		*	A	A	В	С	•	•	A		A	A	
Calcium Chloride Aq.	10	D	A	A	A	A	A	•	A	A	A	A	•
Calcium Chloride (in Alcohol)	20	D	D	A	*	•	•	•	A	A	A	. <u>.</u>	
Calcium Hypochlorite		D	D	D	A	<u>A</u>	B	T +	A	A	A	A	•
Camphor		A	A	<u>A</u> .	•	· ·	•	*	A	A	A	*	•
Carbon Disulphide Carbon Tetrachloride		A	A	A _		D		+ ·	A	A	A		
Carbonic Acid Ag.	10	A	A ·	. <u>A</u>	A	D	A .	<u>A</u> .	A	A	A	A -	A .
Carnalite Aq.	10	<u> </u>	Å	A –	A N	*	*	•	A	t î	A	· ·	<u> </u> .
Castor Oil	IV.	A	· ·	A	A	A	•	•	Â	•	Â	•	
Catechol		- î	с			1	· -	•	F î -	•	A	•	•
Chloroacetic Acid Ag.	10	D	Č	D	+	· · ·	E	•	A	A	A	•	· ·
Chioral Hydrate		0	D	•	•	•	· -		A		A	•	•
Chlorine Aq.	10	D	D	D	۲.	D	D	*	A	•	D	•	•
Chlorine Gas	100	•	D	D		В	•	•	A	L. •	A	·	A
Chiorobenzene		A	A	A	A	D	D	*	A	A	A	A	•
Chloroform		A	C	C	D	D	D		[<u>A</u>	A _	A	A	A
Chaorona	10	D	с	D	•	•	•	• •	<u>A</u>	. <u>D</u>	<u> </u>	•	•
Chlorosulfonic Acid Aq.													
Chlorosulfonic Acid Aq. Chrome Alum Aq.	10	A	,	` 	<u>⊢:</u> ·	<u>A</u>	<u> </u>		<u>A</u>	↓	A		
Chlorosulfonic Acid Aq.		A D B	C B	B	A	A A A	A	A	A A A		A A A	A	A

Quadrant Engineering Plastics Products

global leader in engineering plastics for machining

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

A LEADER IN CUSTOMER SERVICE

The chemical resistance of plastics can be difficult to predict. It is dependent upon: temperature, time of exposure, chemical concentration, and stress on the material. Increases in any of these factors may result in reduced chemical inertness. This table is intended as a guide only, and not intended as an alternative to actual testing. Quadrant recommends actual testing which represents the only method for evaluating suitability for use.

		Nyi	งกร	*e									
		SS		Acetron ^a GP Acetal, Deirin*		te							
		Nylon 101, Nylatron*GS	. ·			PC 1000 Polycarbonate	PSU 1000 Polysulfone						
	i l	atr	MC* 901, MC* 907, Nyiatron* GSM, GSM Blue, NSM	1 1 1 1	i _	E	\$n;	ធ្ល	16) 13				Celazole * Polybenzimidazole
	5	Ň	t Sã≍	A A		olyc	ŝ	6	Цd	Sd	- 漢		l da
	Concentration Weight, %	ъ́	20 g	0	Ertalyte" PEFP Ertalyte" TX	PAC	8	Ultem* 1000 PE!	Fluorosint ^o PTFE	Techtron* PPS	Ketron*, PEEK	Torion* PAI	e H
	, be time time time time time time time tim	÷.	850	l le	yte	8	₽.	Έ	IQS	Į į	on [‡]	*	경혼
Chemical	je gi	ylo	S S S	cet	ter ter	5	<u>S</u>	Ite	- Pil	<u>ਤ</u> ,	5	Ť	爱爱
	05					<u>-</u>	-				+	<u> </u>	
Coconut Oil	╡ ┃	<u>.</u> A	A	<u>···</u>	.	,		•	<u>A</u>	A	A		
Creosote	┥──┫	A	· -			D		_: .	A	A	A	-	
Cresols	I	_ <u>D</u>	D ,	-	+	D.			A	- A	A	,	\vdash
Cresylic Acid Cupric Chloride Ag.	10	<u>D</u>	<u>↓ .</u>		A	A	A		<u>A</u>	A	Ā	-	† •
Cupric Sulfate Aq.	0.5	<u>.</u>	<u>в</u>	A		A	1÷	•	A	Å	Â	- 1	•
oppic oblicte Ag.	1 10 1	- 8		A -	· ·		•	•	A	A	A	•	1 •
	SAT	-	В	† .	'	*	•	*	A	A	Â	•	· ·
Cyclohexane	+ 1	A	A	A	A	8	В	A	A	[A	A	A	A
Cyclohexanol	†	8	В	A	A	С	A	Α	Α	A	A	A	. A .
Cyclohexanone		А	A	A	A	D	D	•	A	A	<u>A</u>	A	A
Decalin		A	A	<u>A</u>	_ ,	A	A	A	<u>A</u>	A	Α.		Α.
Detergents, Organic		A	A	A	A	<u>A</u>	A	A	<u>A</u>	- <u>^</u>	. <u>A</u>		A
Dibutylphthalate		Α	A	A	<u>├</u>	D		В	A		<u>A</u> .	<u>A</u>	· ·
Dichlorodifluoro Methane	∔ <u> </u>	A	<u>A</u>	A	- <u>A</u>	D	0	<u> </u>	A	B	<u>A</u>		A
Dichloroethylene	90	A .	<u>A</u>	↓ D	B	D	D	Ð	A		A	<u>A</u>	<u>A</u>
Diethyleneglycol Aq.		<u>A</u>	В.	A	<u>A</u> .	A .	B		A -	A	A	A	A
Diesel Oil Directivel Contrinol	+ -+	<u>A</u>	A	A	A .	A	A	A	A	· 🕂 –	A	<u>A</u>	- A
Dimethyl Carbinol	⊣ —	A	В ,	<u>۾</u> ا	8	D	D	D.	A	A	A	A	. ·
Dimethyl Aniline Dimethyl Formamide	<u>+</u>	<u>A</u>	A A	A	A	D	D	D	A	- <u>A</u>	Â	† 7	†•• •
Dioxane	+ -	— · <u>A</u>	A	A	1 Â	D	! <u>D</u>		Â	A	Â	A	1.
Edible Olis	+	A	A	Â	A	A	в	A	A	A	A	A	Î A Î
Ethanol, Denatured	96	8	B	A	A	A	Ā	A	A	A	A	A	A
Ether, Diethyl		A	A	A	A	A	A	A	A	A	A	A	A
Ethyi Acetate	1	A	A	c	A	D	D	в	A	A	A	A	· ·
Ethyl Butyrate	1 1	A	•	1 •	•	D	0	8	A	ŀ	A_	A	ļ. :
Ethyl Chloride		•	A	I	•		•	•	Α	i A	A	A	· ·
Ethylene Chlorohydrin		D	•	·	· .	D	· ·	•	A	· ·	A	· ·	<u>↓ ·</u>
Ethylene Chloride		B	В	L. A	L C	_ <u>_</u>	C	С	Α_	A	A	<u>A</u>	A
Ethylene Diamine		В	A	<u> </u>	·	C	B	C	A	D	A		1 :-
Ethylene Dichloride		<u> </u>	· ·	8	<u> </u>	D		D	A	<u>B</u> .	<u> </u>	A	A.
Ethylene Glycol Aq.	96	Α	8	A -	A .	8	A	D	A	A	LA.	A	A .
Ethylene Propionate		<u>A</u>		+			<u> '</u>		A		A	<u>A</u>	. .
Ferric Chloride Ag.	5	<u></u>	B	<u>A</u>	A .	A	A.		Ļ٨.	A	A B	A	
	SAT -	B C		A		A	A		A	A	B	A	1 .
Ferrous Chloride Aq.	10	8		A	1.	· ·	•	<i>.</i>	t Â	Â	A	A	<i>.</i>
Filippine		0		<u> </u>	+ .	•	+		ĉ	17	D		· ·
Fluosificio Acid Aq.	10	D	c c	+		A	•••	•	B	Ϊ Α	17.	t	• •
Fluothane		A	Ā	· ·		1 ÷	1	t ·	Ā	1	A	•	1 •
Freon 12 (Arcton 12)		A	A	A -	A	D	A	· ·	A	B	A	T •	A
Formaldehyde Ag.	10	A	B	A	A	A	С	A	A	A	A	Γ A	<u> </u>
Formic Acid Aq.	3	D	D D	<u>a</u>	B	, A		A	A	A	8	<u>L c</u>	0
···· · · · · · · · · · · · · · · · · ·	10	D	D	0	L C	8	D	A	A	A	B	С	D
Fruit Juices	CONC	A	8	<u>A</u>	A A	A	A		A	A	A	A	· ·
Furfural		A	В	A	-	·	D	+ : -	A	<u>A</u>	A_A	B	1 :
Gasoline	·-	A	<u>A</u>	+ · · A	<u>+</u> ^ .	<u> 0</u>	B	B	<u>A</u>	A	A	A	A
Glycerine		<u> </u>	8	<u>A</u>	<u>∔ ^</u>	A	B		<u>A</u>	A	<u>A</u>	A	· ·
Heptane		<u>A</u>	A .	A	A	A	A	A	<u>A</u>	A	A	A	A
Hexane	10	A	A	A	<u>A</u>	A	B	- <u>A</u>	A	A	A.	A	A
Hydrobromic Acid Aq.	10	<u>D</u>	<u> </u>	. <u> </u>		A	B	A	- A	8 A		A	B
Hydrochloric Acid Aq.	2	8	<u> </u>	<u> </u>	A B	A	A	A	A	A	A		D
· · · · · · · · · · · · · · · · · · ·	10		<u>D</u>		C B	A	A	A	A	B	Â	A	0
Hydrofiuoric Acid Aq.	· · · · · · · · · · · · · · · · · · ·			D	B	A	A	7	Ċ	6		t î .	1
Hydrogenated Vegetable Oils		A	+ <u>~</u>	A	A	1÷	17	 ,	Ā	A	A	A	•
Hydrogen Peroxide Aq.	0.5	Ē D	† 7	A	A	A	- A	A	t Â	A	A	1	ΓA΄
	1	D	† c	B	A	A	A	A	A	A	A	•	A
· · · · · · · · · · · · · · · · · · ·	3	D	C C	Т. <u>в</u>	A	A	A	A	A	A	A	•	A
Hydrogen Sulfide Aq.	SAT	C .	Ť č	C I	L C	A	1.		A	A	A	· ·	•
Hydroquinone		В	в	1 •	Ţċ	· ,	[•	· ·	A		A	<u>·</u>	•
lodine (in Alcohol)		D	D D		· ·	D	•	*	A	•	A	ļ. ·	· · ·
lodine (in Pt. lodine) Aq.	3	D	¢		<u> </u>	D	•	<u> </u>	A.	+	A	+ -	<u> :</u>
Iso octane		A	<u>A</u>	A	- A	A	8	B	A	A	A	A	A
Isopropyi alcohol		6	В	A	A	A A	Į B	A	Į Ą_	A	A	A	A
Isopropyl Ether	+ ·	<u>. A</u>	<u>A</u>	A .	<u>+</u> ^	A	<u>.</u> -	A .	, <u>A</u>	A	<u>A</u>	A	A
	10	A	A	A .	A .	A	A	<u> ·</u>	+ Ά	A	A	A	
Lactic Acid Ag.	00					1 1	1 1		A	1 4			
	90	C C	D			<u> </u>	+ -	<u>.</u>	+	A	A	I A	<u>!</u> .
Lead Acetate Ag.	90	B	8	A	•	•	· .		A	A	A.	<u> </u>	·
						· ·	· ·		+			•	

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

The following chemicals and fluids are known to attack or be compatible with the Quadrant materials given. Chemical effects are at room temperature. Use this chart as a general guide only. Contact Quadrant for further information.

		Ny	lons	ja j					l				못
Chemical	Concentration Weight, %	Nykon 101, Nykatron* GS	MC* 901, MC* 907 Nylatron* GSM, GSM Blue, Nylatron* NSM	Acetron* GP Acetal, Deirin*	Ertalyte* PET-P Ertalyte* TX	PC 1000 Polycarbonate	PSU 1000 Polysulfane	Ultem* 1000 PEI	Fluorosint [®] PTFE	Techtron* PPS	Ketron*, PEEK	Torton" PAI	Celazole* Potybenzimidazole
Chemical	ర≯		<u> </u>		1				1	1		<u> </u>	1
Lubricating Oils (Petroleum)		A	A	A	A	A _	A	A .	A	A	A	A	A
Magnesium Chloride Aq.	10	A	A	A	A	A	A		A	A	A	A	<u> </u>
Magnesium Hydroxide Aq.	10	A	A	A	B	-			A	A	Ä	D	
Magnesium Sulfite Aq.	10 CONC	A _	A C	A		•		•	A	A	A	A	<u> </u>
Maleic Acid Aq	CONC	· · ·	C C			•	B	,	A		A	,	· ·
Matonic Acid Aq. Manganese Sulfate Ac.	10	A	Ă -	A	A	•	,	,	A		Â		
Manganese Suitate Ag. Mercuric Chloride Ag.	6	 C	D	B	· ·	A	<u> </u>	•	A	<u> </u>	A	<u> </u>	
Mercury		— Ă —	Ā	Ā	A ⁻	A			†Â.—	A	A	· ·	<u>+-</u>
Methanol		Â	B	A	A	В	в	A	A	A	A	•	A
Methyl Acetale		A	A	A	A	D	•	8	A	A	A	A	
Methyl Ethyl Kelone	· · · · ·	A	A	В	Î A İ	D	8	D	8	ÌВ.	Ä	A	A
Methylpyrrolidone		A	A	•	•	•		•	A	A	A	•	- · ·
Methylene Chloride		В	В	C C	ן ס'ן	D		C	A	A	A	A	_ <u>`</u>
Methy Phenyl Ether		Ā	· ·		A	•	· ·	· ·	A	A	A	A	
Milk		A	A	A	A	A	A	А	A	A	A	_ A	A
Mineral Oils		A	A	A		A	A	A	A	A	A	Ā	A
Naphthalene		A	A	٨	A	D	D	D	A	٨	A	*	
Nickel Sulfate Aq.	10	A	Α	•	• · .	A		•	A	A	A	•	
Nicotine		Ö		•		•	· ·	•		<u> </u>	A	•	<u> </u>
Nitric Acid Aq.	0.1	C	<u> </u>	D	В	A	A	A	A	A .	A.	A	<u></u> .
	10	D	D	D	0	A	C	A	A	В	A	A	C .
Nitrobenzene		C .	8	В	D B	D A	D	D	A	A	A	A	
Nitromethane		A	+- 8 ·	A	A	A		•	A	A A	A		ł
Oleic Acid	- 10	A C	8	- <u>A</u>	- A	A	Â		A	A			
Oxalic Acid Aq. Ozone	10	c	C C		A	D	A -		A	i ^ -	- <u>A</u>	<u> </u>	
Paraffin	·	Ă	- -	A	A	A	A	A	A	A	A	A	A
Perchtoroethylene	<u> </u>	<u> </u>	8	<u> </u>	- <u>^</u>	ĉ		ĉ	Â	A	A	A	A
Perchloric Acid Ag.	10	D	+-č ·	- C	A -		⊢		Â	l î	<u> </u>	<u> </u>	<u> </u>
Petroleum Ether	10	A	A	⊷	<u>⊢</u> ;	A	· ·	•	Â	A	A	A	
Phenol Ag.	6	D		<u> </u>		D	•		A	<u>+-;</u> —	B		A
	75	D	D	- <u>p</u>	C	D	D	D	A		D	•	A
Phenol (Molten)		D	+	D	c		D	D	A	•	8	+	
Phosphoric Acid Aq.	0.3		e :	c	Ā	A		Ā	A		A	A	Т в
	3	D	C	° c ° °	A	A	A	A	A	A	A	A	C
	10	D	D	D	8	A	A	A	A	A	A	A	C C
Phthalic Acia Aq.	SAT	В	В	A	•	•	•	•	A	•	А	•	•
Phthalic Dioctyl		A	A	,	· ·	•	•		A	A	A		`
Potassium Acetate Ag.	50	A	A	A	i •	•	•	• ·	1 A -	† · · ·	A	A	•
Potassium Bicarbonate Aq.	60	Ă	A	A	A	•	•	•	A	A	A	A	
Potassium Bromide Aq.	10	A	À	А	A	A	· 1	•	A	[A _	A	A	•
Potassium Carbonate Aq.	60	A	A	A	A	1	•	A	A	A	A	A	
Potassium Chloride Aq.	90	A	A	A	A	A		_ ;	A	A	<u>A</u>	A	, <u> </u>
Potassium Dichromate Ag.	5	C	8	A	A	A	Lí.		A	Α.	Ā	<u>A</u>	
Potassium Ferricyanide Aq.	30	A	B	-	A	•	· ·	•	A	· ·	A	,	-
Potassium Ferrocyanide Aq.	30	A	В	<u> </u>		'	<u> </u>	•	A	<u> </u>	A		
Potassium Hydroxide Aq.	10	C C	A	A	C C	0	<u>A</u> -	A	B	^ -	<u>A</u>	D	+ - <u>-</u> -
Datasana Milana Ar	50	Ç A	A	DB	C A	D	B		C	A	A	D -	
Potassium Nitrate Aq.	10	D	A	A	A		A	•	A	A	A	A	•
Potassium Permanganate Aq. Potassium Sulfite Aq.	CONC	A	A	· ·		A.	17		A	A	Ā	Â-	•
Potassium Sulfite Aq.	90	A	+ 2		•		•	•		÷.	A	A	+
Propane Gas		A	A	A	A	A	, ,	•	A	A		÷	A
Pyridine		A	A	В		Ď	D			17	A A	D	t ÷
Resorcinol		Ð	D	— ,	i •	•	-		A		Â	7	
Salicylic Acid		A	A	D	A	,	· ·	,	A	·	A	`	•
	<u> </u>	A	A	A	A	A			A	- A -	A -	Ă	A .
Silicone Fluids	<u> </u>	A	A	A	A	A	· ·		1 A -	A	A -	A	1 •
		~ ~		r .	Í A T	A	T A	A	Ā	Î A Î	À	A	Ā
Silicone Fluids Silver Nitrate Soap Solutions		A	A	A					0	1 .	-	•	_ · _
Silver Nitrate Soap Solutions	· · · · · · · · · · · · · · · · · · ·	A	r	C	,	•	<u> </u>		B	ι _	D	L	
Silver Nitrate Soap Solutions Sodium (Molten) Sodium Acetate Aq.	60	A 		Č Á	, A	•	-		A	A -	A	A	i
Silver Nitrate Soap Solutions Sodium (Molten) Sodium Acetate Aq. Sodium Benzoate Aq.	10	A A A	r B •	A A	A	7	•		A A	A -	A A	A	
Silver Nitrate Soap Solutions Sodium (Motter) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Benzoate Aq.	10 50	A A A A	B A	A A A	A A A	Ă	•		A A A	A -	A A A	A A A	
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Bicarbonate Aq. Sodium Bicarbonate Aq.	10 50 10	A A A A	B • A A	A A D	A A A A	7	•		A A A	A · A A	A A A A	A A A	-, -, -, -,
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Bicarbonate Aq. Sodium Bisulphite Aq. Sodium Bisulphite Aq.	10 50 10 10	A A A A A A	B • A A B	C A A D A	A A A A A	A A	•	· · · · ·	A A A A	A A A A	A A A A	A A A A	-, -, -, -, -, -, -, -, -, -, -, -, -, -
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Bicarbonate Aq. Sodium Bicarbonate Aq.	10 50 10 10 20	A A A A A A A	B • A A	A A A A A A	A A A A	A A ·	•		A A A A A A	A 	A A A A A A	A A A A A A	-, -, -, -,
Silver Nitrate Soap Solutions Sodium (Motteri) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Bicarbonate Aq. Sodium Bisulphite Aq. Sodium Bromide Aq. Sodium Carbonate Aq.	10 50 10 10 20 50	A A A A A A A	A A B B S	C A A D A A A A	A A A A A A	A A ·	* * *		A A A A A A	A A A A A A	A A A A A A	A A A A A A	
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Bisulphite Aq. Sodium Bisulphite Aq. Sodium Bromide Aq. Sodium Carbonate Aq. Sodium Chlorate Aq.	10 50 10 20 50 10	A A A A A A A A A A	A A B B B B B	A A A A A A A	A A A A A A A	A A · ·	* * * * *		A A A A A A A A	A A A A A A A	A A A A A A A Ā	A A A A A A A A	
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Bicarbonate Aq. Sodium Bisulphite Aq. Sodium Bromide Aq. Sodium Carbonate Aq.	10 50 10 20 50 10 10	A A A A A A A A A	A A B B B B B B B B B B B	A A A A A A A A A	A A A A A A	A A · · · ·	* * *		A A A A A A A A A	A A A A A A A A	A A A A A A A A	A A A A A A A A A	
Silver Nitrate Soap Solutions Sodium (Motten) Sodium Acetate Aq. Sodium Benzoate Aq. Sodium Bisulphite Aq. Sodium Bisulphite Aq. Sodium Bromide Aq. Sodium Carbonate Aq. Sodium Chlorate Aq.	10 50 10 20 50 10	A A A A A A A A A A	A A B B B B B	A A A A A A A	A A A A A A A	A A · ·	* * * * *		A A A A A A A A	A A A A A A A	A A A A A A A Ā	A A A A A A A A	

Quadrant Engineering Plastics Products

global leader in engineering plastics for machining

Superfix (Singapore) Pte Ltd

126 Genting Lane, Singapore 349576

A LEADER IN CUSTOMER SERVICE

The chemical resistance of plastics can be difficult to predict. It is dependent upon: temperature, time of exposure, chemical concentration, and stress on the material. Increases in any of these factors may result in reduced chemical inertness. This table is intended as a guide only, and not intended as an alternative to actual testing. Quadrant recommends actual testing which represents the only method for evaluating suitability for use.

		Nyl	ons	_							1		[
			-	Acetron* GP Acetal, Delrin*		arbonate	sultone	ញ	ш				tole
	Concentration Weight, %	Nylon 101, Nylatron [*] GS	MC ^s 901, MC ^s 907 Nylatron* GSM, GSM Blue, NSM	on* GP Ac	Ertalyte" PET-P Ertalyte" TX	PC 1000 Polycarbonate	PSU 1000 Polysultone	Uitem* 1000 PEI	Fluorosint' PTFE	fechtron [®] PPS	Ketron*, PEEK	PAI	Celazole* Polybenzimidazole
Chemical	Conce Weigh	Nylon	MC° 9 Nylatr GSM	Acetro	Ertaly Ertaly	PC 10	PSU 1	Uitem	Fluoro	Techtr	Ketroi	Torlon' PA	Celazy
Sodium Hydroxide Ag.	50	D	D	D	C	D	(C	D	C	в	A	D	[C
Sockum Hypochlorite 15% CI (Chlorine Bleach)		D	С	D	A	A	A	•	A	A	A	A	В
Sodium Nitrate Ag.	50	A	A	A	A	С	•	•	A	A	A	•	•
Sodium Perborate Ag.	10	В	•	A		•	•	•	A		A	•	[•
Sodium Phosphate Ag.	90	Α	+	•		· ·	•	4	A	•	A	•	[·
Sodium Silicate	-	A	A	•	A	A	В	•	A	A	A	•	•
Sodium Sulfate Ag.	90	A	A	•	A	A	*	٠	A	A	A	A	<u>۲</u>
Sodium Sulfide Ag.	90	A	•	•	В		1 •	•	A	A	A	A	•
Sodium Thiosulfate Aq.	10	A	A	A	A	A	A	•	A	A	A	•	<u>i</u> .
Stannic Chloride Ag.	10	D	•	D	•	A	A	A	A	A	A	•	A
Stannic Sulfate Ag.	10	D	с		•	•	•	•	A	A	A	•	*
Stearic Acid		A	Ă		•	•	•	•	A		A	•	•
Styrene (Monomer)	<u> </u>	Â	A	A	1 c -	D	•	•	A	A	A	•	1 ·
Sulfur		A	Ā	Â	Ă	Ā	•		A	*	A	•	í •
Sulfur Dioxide (Dry Gas)	100	ĉ	Â	D	8	Â	•	•	A	A	Â	A	•
Sulfuric Acid Ag.	2	č	ĉ	D	A	A	A	A	A	A	Â	A	в
ounane Acia Ag.	5	ŏ	ā	D	A	Â	A	A	A	A	Â	Â	В
Sulfuric Acid Conc.		0	a	D		l D	D	D	Â	B	b b		1.
Sulfurous Acid Aq.	10	A -	<u> </u>	D	۲.	A	A	Ă	Â	Ā	Ā	•	в
Tallow	10	A	A	A	•	Â	Â	Â	Â	Â	Â	A	A
Tar		8	B	A	l .	1 .		÷	Â	A	Â	Â	+
	10	8	_	A		A	 		Â	A	Â		+
Tartaric Acid Ag.	10		A		B		D		B	•	A		
Tetrachlorethylene		A	C	<u> </u>	+		<u> ∺</u>	A				L	A
Tetrahydrofuran		A .	A	<u> </u>	A	D		4	A	A	A	A	- <u>-</u>
Tetralin		A	A	<u>A</u>	A	-			A		A		
Thionyl Chloride		0	C .	<u>B</u>	-	ļ		•	A	·	<u>A</u>	. .	•
Thiophene	<u> </u>	A			-		L		A		A	ļ	
Toluane	[<u> </u>	A	В	<u>A</u>	D	D		A	A	A	A	A
Transformer Oil		A	A	<u>A</u>		A	A		A	A	A	A	·
Trichlorethylene		В	В	D	В	D	D	D	A	A	A	<u> </u>	·
Triethanolamine		<u>A</u>	A	A	В	D	C C	D	A	A	A	D	
Turpentine		A	AA	A	·	В	l c	•	<u>A</u>	A	A) <u>A</u>	•
Trisodium Phosphate Aq.	95	•	<u> </u>	A	A	A	· ·	*	A	A	<u> </u>	(·	
Urea		A	<u>A</u>	A	A	A	· · _	•	<u> </u>	<u>A</u>	A A	1 ·	•
Vaseline	}	A	A	A	A	A	A	A	A	A	A	A	A
Vegetable Oils		A	A	Α	A	<u>A</u>	A	A	A	A	A	A	A
Vinegar		C	C _	В	A	A	•	A	A	A	A	A	A
······································		A	A	•	•	•	•	•	A	A	A	•	•
Vinyl Chloride					A	A	A	A	A	A	A	A	A
Vinyl Chloride Water		A	A	A	<u> </u>								
			A	A	A	Â	A	A	A	A	A	A	A
Water Wax (Molten)		A			-		•			A	A	A .	A .
Water Wax (Molten) White Spirit		A A	<u>A</u> A	A	A •	A	A	Α	A				
Water Wax (Molten) White Spirit Wines & Spirits		A A A B	A A 8	A A A	A • A	A •	A •	A • A	A	A	A	•	
Water Wax (Molten) White Spirit Wines & Spirits Xylene		A A A B A	A A B A	A A A	A •	A · A D	A • • D	A • A C	A A A	A	A A A	• A A	A A
Water Wax (Molten) White Spirit Wines & Spirits Xylene Xylenol	10	A A B A D	A A B A D	A A A A A	A • A A	A · A D D	A · D D	A • A C B	A A A A	A A A	A A A	• A	A
Water Wax (Molten) White Spirit Wines & Spirits Xylene	10	A A A B A	A A B A	A A A	A • A A	A · A D	A • • D	A • A C	A A A	A A A	A A A	• A A	A A A

Quadrant Engineering Plastics Products

global leader in engineering plastics for machining

KEY:

- A No attack, possibly slight absorption. Negligible effect on mechanical properties
- B Slight attack by absorption, some swelling and a small reduction in mechanical properties likely
- C Moderate attack or appreciable absorption; material will have limited life
- D Material will decompose or dissolve in a short time

No data available

*

- Aq. Aqueous Solution
- SAT Saturated Aqueous Solution
- CONC Concentrated Aqueous Solution
- Where aqueous solutions are shown, the concentration as a percentage of weight is given.

Sales Agreement

1. Agreement for sale

The Seller agrees to sell and the Buyer agrees to buy the Goods at the total purchase price stated in the Purchase Order accepted by the Seller and on the terms and conditions set out in the Purchase Order, and the terms and conditions herein which form part of this agreement. Property in, and risk of loss or damage to, the Goods shall pass to the Buyer as soon as the Seller accepts the Buyer's Purchase Order.

2. Payment

The Buyer will pay the Initial Payment (if any) to the Seller on or before the signing of this agreement, and will pay the balance of the total purchase price to the Seller at the address stated (or at such other address as the Seller may specify in writing to the Buyer at the expiry of 30 days from the date of delivery of the goods / acceptance of the Purchase Order by the Seller. Payments by post shall be at the risk of the Buyer.

3. Seller's remedies

The Buyer acknowledges that punctual payment of the balance of the total purchase price is of the essence of this agreement, and that, if the Credit Limit is exceeded and / or if, the Initial Payment or the balance of the total purchase price or any part thereof remains unpaid for more than 7 days after becoming due, the Buyer will be deemed to have repudiated this agreement and:

- 3.1 the full remaining balance of the total purchase price shall immediately become due and payable with interest rate which is 2% above the average prime rate of The Development Bank of Singapore Limited from time to time in force, such interest to accrue from day to day and to run after as well as before any judgement; and
- 3.2 the Seller shall have the option to resell the Goods and on such resale:
- 3.2.1 this agreement shall be withdrawn, clause 3.1 shall cease to have effect and the Buyer will cease to have any property or interest in the Goods, but notwithstanding such withdrawal, the Seller will be entitled to retain all payments made by the Buyer under this agreement and to recover from the Buyer the amount of any deficiency in the total purchase price shown after resale together with interest and costs as provided below;
- 3.2.2 the Buyer will at the Buyer's own expense deliver up possession of the Goods to the purchaser at such address within Singapore as the purchaser may require, and on default the Buyer will indemnify the Seller against all loss and expense sustained by the Seller as a result of such default including, but not limited to the amount of any liability the Seller may insure to the purchaser by reason of the Buyer's default; and
- 3.2.3 except for the payment of any surplus payable to the Buyer pursuant to clause 4 below, all liabilities of the Seller to the Buyer shall be extinguished and the Buyer will have no rights or claims against the Seller of any kind whatsoever under or arising out of this agreement.

4. Proceeds of resale

The proceeds of any resale under clause 3.2 above shall, after deducting the costs and expenses of insurance (if any), storage, transport and resale, be applied in paying to the Seller the unpaid balance of the total purchase price and interest payable under this agreement with all costs incurred by the Seller (including legal costs on a full indemnity basis) in taking steps to enforce payment by the Buyer or to locate and resell the Goods. If such proceeds of sale are insufficient for that purpose, the Buyer will pay to the Seller on demand the amount of the deficiency. If such proceeds of sale exceed the amount to be paid to or retained by the Seller under this clause, the excess shall be paid to the Buyer, but the Seller will be entitled to retain and set off against what would otherwise be due to the Buyer under this clause such sum as in the sole opinion of the Seller necessary to provide the Seller with the Indemnities due to the Seller from the Buyer under this agreement.

5. Insurance

The Buyer will keep the Goods insured in their full replacement value and with Insurers to be approved by the Seller against loss or damage by fire and such other risks (including third party risks) as are usually covered by insurance in the type of business for which the Goods are for the time being used and such further risks as the Seller reasonably requires in making good the damage; or if the Goods are damaged beyond repair in replacing the Goods by other similar Goods to which the terms of this agreement shall apply.

6. Indemnity against third party claims

As an obligation surviving termination of this agreement, the Buyer will indemnify the Seller in respect of any claims made against the Seller and all damages, costs and expenses suffered or incurred by the Seller as a result of a claim made by a third party arising out of the state, condition or use of the Goods, or in any way arising out of the Goods being sold under this agreement.

7. Condition of Goods

It is now mutually agreed that:

- 7.1 The Buyer declares that he has examined the Goods and that they are in every respect satisfactory;
- 7.2 The Seller does not sell the Goods subject to any condition or warranty, express or implied, save those implied by the provisions of the Sale of Goods Act (Cap 393) Section 12 (relating to the title of the Seller to the Goods), so that (without prejudice to the generality of the foregoing) there is excluded:
- 7.2.1 any condition of fitness of the Goods for any particular purpose;
- 7.2.2 in cases where the Goods are sold by reference to a description, any condition that the Goods will correspond with the description; or
- 7.2.3 where the Goods are sold by reference to a sample, any condition that the bulk will correspond with the sample in quality, that the Buyer will have a reasonable opportunity of comparing the bulk with the sample, and that the Goods will be free from any defect rendering them unmerchantable which would not be apparent on reasonable examination of the sample; and
- 7.2.4 any condition of merchantable quality in respect of the Goods.

8. Notices

Any notice or demand served under this agreement shall be sufficiently served if sent by prepaid letter post or telex to the usual or last known place of business of the addressee, and proof of dispatch shall be conclusive evidence of receipt by the addressee in due course of transmission.

9. Disclosure

The Seller may disclose details of and relating to the transaction evidenced by this agreement to any credit reference agency or any other party at the Seller's discretion, and the Seller may refuse to enter into this agreement without stating a reason.

10. Interpretation and miscellaneous

- 10.1 The clause headings do not form part of this agreement and shall not be taken into account in its construction or interpretation.
- 10.2 Words importing one gender include all other genders and words importing the singular include the plural and vice versa.
- 10.3 References to the Seller shall where the context so admits include the Seller's successors in the tile and references to the Goods include all replacements and renewals of the Goods and all accessories and additions to the Goods.
- 10.4 The rights conferred on the Seller under this agreement shall be in addition to, and not in substitution for, any rights conferred on the Seller by the Sale of Goods Act (Cap 393) or at common law.
- 10.5 This agreement contains all the terms agreed between the Seller and the Buyer. The Buyer has not relied upon any representation or warranty by the Seller except as expressly stated or referred to in this agreement. No variation of this agreement shall be effective unless it be in writing and signed by or on behalf of the Seller and the Buyer. The rights of the Seller under this agreement shall not in any way be affected by any time or other indulgence granted by the Seller.
- 10.6 Any reference in this agreement to a statutory provision shall be construed as a reference to that provision as from time to time amended or reenacted.

Notes